Brain-like learning with exponentiated gradients
Jonathan Cornford
Roman Pogodin
Arna Ghosh
Kaiwen Sheng
Brendan A. Bicknell
Olivier Codol
Beverley A. Clark
Efficient Biological Data Acquisition through Inference Set Design
Ihor Neporozhnii
Julien Roy
Jason Hartford
In drug discovery, highly automated high-throughput laboratories are used to screen a large number of compounds in search of effective drugs… (see more). These experiments are expensive, so one might hope to reduce their cost by only experimenting on a subset of the compounds, and predicting the outcomes of the remaining experiments. In this work, we model this scenario as a sequential subset selection problem: we aim to select the smallest set of candidates in order to achieve some desired level of accuracy for the system as a whole. Our key observation is that, if there is heterogeneity in the difficulty of the prediction problem across the input space, selectively obtaining the labels for the hardest examples in the acquisition pool will leave only the relatively easy examples to remain in the inference set, leading to better overall system performance. We call this mechanism inference set design, and propose the use of a confidence-based active learning solution to prune out these challenging examples. Our algorithm includes an explicit stopping criterion that interrupts the acquisition loop when it is sufficiently confident that the system has reached the target performance. Our empirical studies on image and molecular datasets, as well as a real-world large-scale biological assay, show that active learning for inference set design leads to significant reduction in experimental cost while retaining high system performance.
Efficient Biological Data Acquisition through Inference Set Design
Ihor Neporozhnii
Julien Roy
Jason Hartford
In drug discovery, highly automated high-throughput laboratories are used to screen a large number of compounds in search of effective drugs… (see more). These experiments are expensive, so one might hope to reduce their cost by only experimenting on a subset of the compounds, and predicting the outcomes of the remaining experiments. In this work, we model this scenario as a sequential subset selection problem: we aim to select the smallest set of candidates in order to achieve some desired level of accuracy for the system as a whole. Our key observation is that, if there is heterogeneity in the difficulty of the prediction problem across the input space, selectively obtaining the labels for the hardest examples in the acquisition pool will leave only the relatively easy examples to remain in the inference set, leading to better overall system performance. We call this mechanism inference set design, and propose the use of a confidence-based active learning solution to prune out these challenging examples. Our algorithm includes an explicit stopping criterion that interrupts the acquisition loop when it is sufficiently confident that the system has reached the target performance. Our empirical studies on image and molecular datasets, as well as a real-world large-scale biological assay, show that active learning for inference set design leads to significant reduction in experimental cost while retaining high system performance.
Gravitational-Wave Parameter Estimation in non-Gaussian noise using Score-Based Likelihood Characterization
Ronan Legin
Maximiliano Isi
Kaze W. K. Wong
Prediction of Final Phosphorus Content of Steel in a Scrap-Based Electric Arc Furnace Using Artificial Neural Networks
Riadh Azzaz
Valentin Hurel
Patrice Ménard
M. Jahazi
Elmira Moosavi-Khoonsari
scMoE: single-cell mixture of experts for learning hierarchical, cell-type-specific, and interpretable representations from heterogeneous scRNA-seq data
Michael Huang
Advancements in single-cell transcriptomics methods have resulted in a wealth of single-cell RNA sequencing (scRNA-seq) data. Methods to lea… (see more)rn cell representation from atlas-level scRNA-seq data across diverse tissues can shed light into cell functions implicated in diseases such as cancer. However, integrating large-scale and heterogeneous scRNA-seq data is challenging due to the disparity of cell-types and batch effects. We present single-cell Mixture of Expert (scMoE), a hierarchical mixture of experts single-cell topic model. Our key contributions are the cell-type specific experts, which explicitly aligns topics with cell-types, and the integration of hierarchical cell-type lineages and domain knowledge. scMoE is both transferable and highly interpretable. We benchmarked our scMoE’s performance on 9 single-cell RNA-seq datasets for clustering and 3 simulated spatial datasets for spatial deconvolution. We additionally show that our model, using single-cell references, yields meaningful biological results by deconvolving 3 cancer bulk RNA-seq datasets and 2 spatial transcriptomics datasets. scMoE is able to identify cell-types of survival importance, find cancer subtype specific deconvolutional patterns, and capture meaningful spatially distinct cell-type distributions.
Understanding Adam Requires Better Rotation Dependent Assumptions
Lucas Maes
Tianyue H. Zhang
Alexia Jolicoeur-Martineau
Damien Scieur
Charles Guille-Escuret
Despite its widespread adoption, Adam's advantage over Stochastic Gradient Descent (SGD) lacks a comprehensive theoretical explanation. This… (see more) paper investigates Adam's sensitivity to rotations of the parameter space. We demonstrate that Adam's performance in training transformers degrades under random rotations of the parameter space, indicating a crucial sensitivity to the choice of basis. This reveals that conventional rotation-invariant assumptions are insufficient to capture Adam's advantages theoretically. To better understand the rotation-dependent properties that benefit Adam, we also identify structured rotations that preserve or even enhance its empirical performance. We then examine the rotation-dependent assumptions in the literature, evaluating their adequacy in explaining Adam's behavior across various rotation types. This work highlights the need for new, rotation-dependent theoretical frameworks to fully understand Adam's empirical success in modern machine learning tasks.
Context is Key: A Benchmark for Forecasting with Essential Textual Information
Andrew Robert Williams
Arjun Ashok
Étienne Marcotte
Valentina Zantedeschi
Jithendaraa Subramanian
Roland Riachi
James Requeima
Alexandre Lacoste
Forecasting is a critical task in decision making across various domains. While numerical data provides a foundation, it often lacks crucial… (see more) context necessary for accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge or constraints, which can be efficiently communicated through natural language. However, the ability of existing forecasting models to effectively integrate this textual information remains an open question. To address this, we introduce"Context is Key"(CiK), a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. By presenting this benchmark, we aim to advance multimodal forecasting, promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/ .
Context is Key: A Benchmark for Forecasting with Essential Textual Information
Andrew Robert Williams
Arjun Ashok
Étienne Marcotte
Valentina Zantedeschi
Jithendaraa Subramanian
Roland Riachi
James Requeima
Alexandre Lacoste
Forecasting is a critical task in decision making across various domains. While numerical data provides a foundation, it often lacks crucial… (see more) context necessary for accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge or constraints, which can be efficiently communicated through natural language. However, the ability of existing forecasting models to effectively integrate this textual information remains an open question. To address this, we introduce"Context is Key"(CiK), a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. By presenting this benchmark, we aim to advance multimodal forecasting, promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/ .
ConvNTC: Convolutional neural tensor completion for predicting the disease-related miRNA pairs and cell-related drug pairs
Pei Liu
Xiao Liang
Jiawei Luo
From Efficiency to Equity: Measuring Fairness in Preference Learning
S. Gowaikar
Hugo Berard
Rashid A. Mushkani
As AI systems, particularly generative models, increasingly influence decision-making, ensuring that they are able to fairly represent diver… (see more)se human preferences becomes crucial. This paper introduces a novel framework for evaluating epistemic fairness in preference learning models inspired by economic theories of inequality and Rawlsian justice. We propose metrics adapted from the Gini Coefficient, Atkinson Index, and Kuznets Ratio to quantify fairness in these models. We validate our approach using two datasets: a custom visual preference dataset (AI-EDI-Space) and the Jester Jokes dataset. Our analysis reveals variations in model performance across users, highlighting potential epistemic injustices. We explore pre-processing and in-processing techniques to mitigate these inequalities, demonstrating a complex relationship between model efficiency and fairness. This work contributes to AI ethics by providing a framework for evaluating and improving epistemic fairness in preference learning models, offering insights for developing more inclusive AI systems in contexts where diverse human preferences are crucial.
From Efficiency to Equity: Measuring Fairness in Preference Learning
S. Gowaikar
Hugo Berard
Rashid A. Mushkani
As AI systems, particularly generative models, increasingly influence decision-making, ensuring that they are able to fairly represent diver… (see more)se human preferences becomes crucial. This paper introduces a novel framework for evaluating epistemic fairness in preference learning models inspired by economic theories of inequality and Rawlsian justice. We propose metrics adapted from the Gini Coefficient, Atkinson Index, and Kuznets Ratio to quantify fairness in these models. We validate our approach using two datasets: a custom visual preference dataset (AI-EDI-Space) and the Jester Jokes dataset. Our analysis reveals variations in model performance across users, highlighting potential epistemic injustices. We explore pre-processing and in-processing techniques to mitigate these inequalities, demonstrating a complex relationship between model efficiency and fairness. This work contributes to AI ethics by providing a framework for evaluating and improving epistemic fairness in preference learning models, offering insights for developing more inclusive AI systems in contexts where diverse human preferences are crucial.