AI Automatons: AI Systems Intended to Imitate Humans
Solon Barocas
Su Lin Blodgett
Lisa Egede
Alicia DeVrio
Myra Cheng
There is a growing proliferation of AI systems designed to mimic people's behavior, work, abilities, likenesses, or humanness -- systems we … (see more)dub AI automatons. Individuals, groups, or generic humans are being simulated to produce creative work in their styles, to respond to surveys in their places, to probe how they would use a new system before deployment, to provide users with assistance and companionship, and to anticipate their possible future behavior and interactions with others, just to name a few applications. The research, design, deployment, and availability of such AI systems have, however, also prompted growing concerns about a wide range of possible legal, ethical, and other social impacts. To both 1) facilitate productive discussions about whether, when, and how to design and deploy such systems, and 2) chart the current landscape of existing and prospective AI automatons, we need to tease apart determinant design axes and considerations that can aid our understanding of whether and how various design choices along these axes could mitigate -- or instead exacerbate -- potential adverse impacts that the development and use of AI automatons could give rise to. In this paper, through a synthesis of related literature and extensive examples of existing AI systems intended to mimic humans, we develop a conceptual framework to help foreground key axes of design variations and provide analytical scaffolding to foster greater recognition of the design choices available to developers, as well as the possible ethical implications these choices might have.
Beyond Cosine Decay: On the effectiveness of Infinite Learning Rate Schedule for Continual Pre-training
Vaibhav Singh
Paul Janson
Paria Mehrbod
Adam Ibrahim
Benjamin Thérien
The ever-growing availability of unlabeled data presents both opportunities and challenges for training artificial intelligence systems. Whi… (see more)le self-supervised learning (SSL) has emerged as a powerful paradigm for extracting meaningful representations from vast amounts of unlabeled data, existing methods still struggle to adapt to the non-stationary, non-IID nature of real-world data streams without forgetting previously learned knowledge. Recent works have adopted a repeated cosine annealing schedule for large-scale continual pre-training; however, these schedules (1) inherently cause forgetting during the re-warming phase and (2) have not been systematically compared to existing continual SSL methods. In this work, we systematically compare the widely used cosine schedule with the recently proposed infinite learning rate schedule and empirically find the latter to be a more effective alternative. Our extensive empirical evaluation across diverse image and language datasets demonstrates that the infinite learning rate schedule consistently enhances continual pre-training performance compared to a repeated cosine decay without being restricted to a fixed iteration budget. For instance, in a small-scale MAE pre-training setup, it outperforms several strong baselines from the literature. We then scale up our experiments to larger MAE pre-training and autoregressive language model pre-training. Our results show that the infinite learning rate schedule remains effective at scale, surpassing repeated cosine decay for both MAE pre-training and zero-shot LM benchmarks.
Beyond Cosine Decay: On the effectiveness of Infinite Learning Rate Schedule for Continual Pre-training
Vaibhav Singh
Paul Janson
Paria Mehrbod
Adam Ibrahim
Benjamin Thérien
The ever-growing availability of unlabeled data presents both opportunities and challenges for training artificial intelligence systems. Whi… (see more)le self-supervised learning (SSL) has emerged as a powerful paradigm for extracting meaningful representations from vast amounts of unlabeled data, existing methods still struggle to adapt to the non-stationary, non-IID nature of real-world data streams without forgetting previously learned knowledge. Recent works have adopted a repeated cosine annealing schedule for large-scale continual pre-training; however, these schedules (1) inherently cause forgetting during the re-warming phase and (2) have not been systematically compared to existing continual SSL methods. In this work, we systematically compare the widely used cosine schedule with the recently proposed infinite learning rate schedule and empirically find the latter to be a more effective alternative. Our extensive empirical evaluation across diverse image and language datasets demonstrates that the infinite learning rate schedule consistently enhances continual pre-training performance compared to a repeated cosine decay without being restricted to a fixed iteration budget. For instance, in a small-scale MAE pre-training setup, it outperforms several strong baselines from the literature. We then scale up our experiments to larger MAE pre-training and autoregressive language model pre-training. Our results show that the infinite learning rate schedule remains effective at scale, surpassing repeated cosine decay for both MAE pre-training and zero-shot LM benchmarks.
Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts
Marta Skreta
Tara Akhound-Sadegh
Viktor Ohanesian
Roberto Bondesan
Alan Aspuru-Guzik
Arnaud Doucet
Rob Brekelmans
Alexander Tong
While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling infere… (see more)nce-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional 'corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation. Our code is available at https://github.com/martaskrt/fkc-diffusion.
Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts
Marta Skreta
Tara Akhound-Sadegh
Viktor Ohanesian
Roberto Bondesan
Alan Aspuru-Guzik
Arnaud Doucet
Rob Brekelmans
Alexander Tong
While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling infere… (see more)nce-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional 'corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation. Our code is available at https://github.com/martaskrt/fkc-diffusion.
Hardware Synthesizable Exceptions using Continuations
Paul Teng
LLM-Safety Evaluations Lack Robustness
Tim Beyer
Sophie Xhonneux
Simon Geisler
Leo Schwinn
Stephan Günnemann
In this paper, we argue that current safety alignment research efforts for large language models are hindered by many intertwined sources of… (see more) noise, such as small datasets, methodological inconsistencies, and unreliable evaluation setups. This can, at times, make it impossible to evaluate and compare attacks and defenses fairly, thereby slowing progress. We systematically analyze the LLM safety evaluation pipeline, covering dataset curation, optimization strategies for automated red-teaming, response generation, and response evaluation using LLM judges. At each stage, we identify key issues and highlight their practical impact. We also propose a set of guidelines for reducing noise and bias in evaluations of future attack and defense papers. Lastly, we offer an opposing perspective, highlighting practical reasons for existing limitations. We believe that addressing the outlined problems in future research will improve the field's ability to generate easily comparable results and make measurable progress.
LLM-Safety Evaluations Lack Robustness
Tim Beyer
Sophie Xhonneux
Simon Geisler
Leo Schwinn
Stephan Günnemann
In this paper, we argue that current safety alignment research efforts for large language models are hindered by many intertwined sources of… (see more) noise, such as small datasets, methodological inconsistencies, and unreliable evaluation setups. This can, at times, make it impossible to evaluate and compare attacks and defenses fairly, thereby slowing progress. We systematically analyze the LLM safety evaluation pipeline, covering dataset curation, optimization strategies for automated red-teaming, response generation, and response evaluation using LLM judges. At each stage, we identify key issues and highlight their practical impact. We also propose a set of guidelines for reducing noise and bias in evaluations of future attack and defense papers. Lastly, we offer an opposing perspective, highlighting practical reasons for existing limitations. We believe that addressing the outlined problems in future research will improve the field's ability to generate easily comparable results and make measurable progress.
Variation Matters: from Mitigating to Embracing Zero-Shot NAS Ranking Function Variation
Pavel Rumiantsev
Neural Architecture Search (NAS) is a powerful automatic alternative to manual design of a neural network. In the zero-shot version, a fast … (see more)ranking function is used to compare architectures without training them. The outputs of the ranking functions often vary significantly due to different sources of randomness, including the evaluated architecture's weights' initialization or the batch of data used for calculations. A common approach to addressing the variation is to average a ranking function output over several evaluations. We propose taking into account the variation in a different manner, by viewing the ranking function output as a random variable representing a proxy performance metric. During the search process, we strive to construct a stochastic ordering of the performance metrics to determine the best architecture. Our experiments show that the proposed stochastic ordering can effectively boost performance of a search on standard benchmark search spaces.
Development and Feasibility Study of HOPE Model for Prediction of Depression Among Older Adults Using Wi-Fi-based Motion Sensor Data: Machine Learning Study.
Shayan Nejadshamsi
Vania Karami
Negar Ghourchian
Howard Bergman
Roland Grad
Machelle Wilchesky
Vladimir Khanassov
Isabelle Vedel
BACKGROUND Depression, characterized by persistent sadness and loss of interest in daily activities, greatly reduces quality of life. Early … (see more)detection is vital for effective treatment and intervention. While many studies use wearable devices to classify depression based on physical activity, these often rely on intrusive methods. Additionally, most depression classification studies involve large participant groups and use single-stage classifiers without explainability. OBJECTIVE This study aims to assess the feasibility of classifying depression using nonintrusive Wi-Fi-based motion sensor data using a novel machine learning model on a limited number of participants. We also conduct an explainability analysis to interpret the model's predictions and identify key features associated with depression classification. METHODS In this study, we recruited adults aged 65 years and older through web-based and in-person methods, supported by a McGill University health care facility directory. Participants provided consent, and we collected 6 months of activity and sleep data via nonintrusive Wi-Fi-based sensors, along with Edmonton Frailty Scale and Geriatric Depression Scale data. For depression classification, we proposed a HOPE (Home-Based Older Adults' Depression Prediction) machine learning model with feature selection, dimensionality reduction, and classification stages, evaluating various model combinations using accuracy, sensitivity, precision, and F1-score. Shapely addictive explanations and local interpretable model-agnostic explanations were used to explain the model's predictions. RESULTS A total of 6 participants were enrolled in this study; however, 2 participants withdrew later due to internet connectivity issues. Among the 4 remaining participants, 3 participants were classified as not having depression, while 1 participant was identified as having depression. The most accurate classification model, which combined sequential forward selection for feature selection, principal component analysis for dimensionality reduction, and a decision tree for classification, achieved an accuracy of 87.5%, sensitivity of 90%, and precision of 88.3%, effectively distinguishing individuals with and those without depression. The explainability analysis revealed that the most influential features in depression classification, in order of importance, were "average sleep duration," "total number of sleep interruptions," "percentage of nights with sleep interruptions," "average duration of sleep interruptions," and "Edmonton Frailty Scale." CONCLUSIONS The findings from this preliminary study demonstrate the feasibility of using Wi-Fi-based motion sensors for depression classification and highlight the effectiveness of our proposed HOPE machine learning model, even with a small sample size. These results suggest the potential for further research with a larger cohort for more comprehensive validation. Additionally, the nonintrusive data collection method and model architecture proposed in this study offer promising applications in remote health monitoring, particularly for older adults who may face challenges in using wearable devices. Furthermore, the importance of sleep patterns identified in our explainability analysis aligns with findings from previous research, emphasizing the need for more in-depth studies on the role of sleep in mental health, as suggested in the explainable machine learning study.
Interval Regression: A Comparative Study with Proposed Models
Tung L. Nguyen
Regression models are essential for a wide range of real-world applications. However, in practice, target values are not always precisely kn… (see more)own; instead, they may be represented as intervals of acceptable values. This challenge has led to the development of Interval Regression models. In this study, we provide a comprehensive review of existing Interval Regression models and introduce alternative models for comparative analysis. Experiments are conducted on both real-world and synthetic datasets to offer a broad perspective on model performance. The results demonstrate that no single model is universally optimal, highlighting the importance of selecting the most suitable model for each specific scenario.
Interval Regression: A Comparative Study with Proposed Models
Tung L. Nguyen
Regression models are essential for a wide range of real-world applications. However, in practice, target values are not always precisely kn… (see more)own; instead, they may be represented as intervals of acceptable values. This challenge has led to the development of Interval Regression models. In this study, we provide a comprehensive review of existing Interval Regression models and introduce alternative models for comparative analysis. Experiments are conducted on both real-world and synthetic datasets to offer a broad perspective on model performance. The results demonstrate that no single model is universally optimal, highlighting the importance of selecting the most suitable model for each specific scenario.