A Multi-Robot Exploration Planner for Space Applications
Vivek Shankar Vardharajan
A Multi-Robot Exploration Planner for Space Applications
Vivek Shankar Vardharajan
We propose a distributed multi-robot exploration planning method designed for complex, unconstrained environments featuring steep elevation … (see more)changes. The method employs a two-tiered approach: a local exploration planner that constructs a grid graph to maximize exploration gain and a global planner that maintains a sparse navigational graph to track visited locations and frontier information. The global graphs are periodically synchronized among robots within communication range to maintain an updated representation of the environment. Our approach integrates localization loop closure estimates to correct global graph drift. In simulation and field tests, the proposed method achieves 50% lower computational runtime compared to state-of-the-art methods while demonstrating superior exploration coverage. We evaluate its performance in two simulated subterranean environments and in field experiments at a Mars-analog terrain.
PETRA: Parallel End-to-end Training with Reversible Architectures
Stephane Rivaud
Louis Fournier
Thomas Pumir
Michael Eickenberg
Edouard Oyallon
Reversible architectures have been shown to be capable of performing on par with their non-reversible architectures, being applied in deep l… (see more)earning for memory savings and generative modeling. In this work, we show how reversible architectures can solve challenges in parallelizing deep model training. We introduce PETRA, a novel alternative to backpropagation for parallelizing gradient computations. PETRA facilitates effective model parallelism by enabling stages (i.e., a set of layers) to compute independently on different devices, while only needing to communicate activations and gradients between each other. By decoupling the forward and backward passes and keeping a single updated version of the parameters, the need for weight stashing is also removed. We develop a custom autograd-like training framework for PETRA, and we demonstrate its effectiveness on CIFAR-10, ImageNet32, and ImageNet, achieving competitive accuracies comparable to backpropagation using ResNet-18, ResNet-34, and ResNet-50 models.
Ex Post Conditions for the Exactness of Optimal Power Flow Conic Relaxations
Jean-Luc Lupien
Convex relaxations of the optimal power flow (OPF) problem provide an efficient alternative to solving the intractable alternating current (… (see more)AC) optimal power flow. The conic subset of OPF convex relaxations, in particular, greatly accelerate resolution while leading to high-quality approximations that are exact in several scenarios. However, the sufficient conditions guaranteeing exactness are stringent, e.g., requiring radial topologies. In this short communication, we present two equivalent ex post conditions for the exactness of any conic relaxation of the OPF. These rely on obtaining either a rank-1 voltage matrix or self-coherent cycles. Instead of relying on sufficient conditions a priori, satisfying one of the presented ex post conditions acts as an exactness certificate for the computed solution. The operator can therefore obtain an optimality guarantee when solving a conic relaxation even when a priori exactness requirements are not met. Finally, we present numerical examples from the MATPOWER library where the ex post conditions hold even though the exactness sufficient conditions do not, thereby illustrating the use of the conditions.
Pruning Sparse Tensor Neural Networks Enables Deep Learning for 3D Ultrasound Localization Microscopy
Brice Rauby
Paul Xing
Jonathan Porée
Jean Provost
Recovering Dantzig–Wolfe Bounds by Cutting Planes
Rui Chen
Oktay Günlük
Andrea Lodi
Leveraging Dantzig–Wolfe Decomposition in the Original Variable Space for Mixed-Integer Programming Dantzig–Wolfe decomposition has been… (see more) extensively applied to solve large-scale mixed-integer programs with decomposable structures, leading to exact solution approaches, such as branch and price. However, these approaches would require solving the problem in an extended variable space and are not readily present in off-the-shelf solvers. In “Recovering Dantzig–Wolfe Bounds by Cutting Planes,” Chen, Günlük, and Lodi propose a computational effective approach for generating cutting planes from Dantzig–Wolfe decomposition to enhance branch and cut in the space of original variables. The proposed approach requires a relatively small number of cutting planes to recover the strength of the Dantzig–Wolfe dual bound and should be easy to implement in general-purpose mixed-integer programming solvers. The authors show that these cutting planes typically lead to a formulation with lower dual degeneracy and hence, a better computational performance than naïve approaches, such as the objective function cut.
Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control
Zhongyu Li
Xue Bin Peng
Pieter Abbeel
Sergey Levine
Koushil Sreenath
This paper presents a comprehensive study on using deep reinforcement learning (RL) to create dynamic locomotion controllers for bipedal rob… (see more)ots. Going beyond focusing on a single locomotion skill, we develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing. Our RL-based controller incorporates a novel dual-history architecture, utilizing both a long-term and short-term input/output (I/O) history of the robot. This control architecture, when trained through the proposed end-to-end RL approach, consistently outperforms other methods across a diverse range of skills in both simulation and the real world.The study also delves into the adaptivity and robustness introduced by the proposed RL system in developing locomotion controllers. We demonstrate that the proposed architecture can adapt to both time-invariant dynamics shifts and time-variant changes, such as contact events, by effectively using the robot's I/O history. Additionally, we identify task randomization as another key source of robustness, fostering better task generalization and compliance to disturbances. The resulting control policies can be successfully deployed on Cassie, a torque-controlled human-sized bipedal robot. This work pushes the limits of agility for bipedal robots through extensive real-world experiments. We demonstrate a diverse range of locomotion skills, including: robust standing, versatile walking, fast running with a demonstration of a 400-meter dash, and a diverse set of jumping skills, such as standing long jumps and high jumps.
Robust prior-biased acquisition function for human-in-the-loop Bayesian optimization
Rose Guay-Hottin
Lison Kardassevitch
Hugo Pham
Round and Round We Go! What makes Rotary Positional Encodings useful?
Federico Barbero
Alex Vitvitskyi
Christos Perivolaropoulos
Petar Veličković
Positional Encodings (PEs) are a critical component of Transformer-based Large Language Models (LLMs), providing the attention mechanism wit… (see more)h important sequence-position information. One of the most popular types of encoding used today in LLMs are Rotary Positional Encodings (RoPE), that rotate the queries and keys based on their relative distance. A common belief is that RoPE is useful because it helps to decay token dependency as relative distance increases. In this work, we argue that this is unlikely to be the core reason. We study the internals of a trained Gemma 7B model to understand how RoPE is being used at a mechanical level. We find that Gemma learns to use RoPE to construct robust "positional" attention patterns by exploiting the highest frequencies. We also find that, in general, Gemma greatly prefers to use the lowest frequencies of RoPE, which we suspect are used to carry semantic information. We mathematically prove interesting behaviours of RoPE and conduct experiments to verify our findings, proposing a modification of RoPE that fixes some highlighted issues and improves performance. We believe that this work represents an interesting step in better understanding PEs in LLMs, which we believe holds crucial value for scaling LLMs to large sizes and context lengths.
Is sharing always caring? Entropy, boundaries and the plurality of psychotherapeutic process.
Lena Adel
Ana Gómez-Carrillo
Jonas Mago
Michael Lifshitz
Spinal cord demyelination predicts neurological deterioration in patients with mild degenerative cervical myelopathy
Abdul Al-Shawwa
Michael Craig
Kalum Ost
David Anderson
Steven Casha
W. Bradley Jacobs
Nathan Evaniew
Saswati Tripathy
Jacques Bouchard
Peter Lewkonia
Fred Nicholls
Alex Soroceanu
Ganesh Swamy
Kenneth C. Thomas
Stephan duPlessis
Michael M.H. Yang
Nicholas Dea
Jefferson R. Wilson
David W. Cadotte
A stochastic integer programming approach to reserve staff scheduling with preferences
Carl Perreault‐Lafleur
Guy Desaulniers