Systematic Generalization: What Is Required and Can It Be Learned?
Dzmitry Bahdanau*
Shikhar Murty*
Michael Noukhovitch
Thien Huu Nguyen
Harm de Vries
On the Relation Between the Sharpest Directions of DNN Loss and the SGD Step Length
Stanisław Jastrzębski
Zac Kenton
Nicolas Ballas
Asja Fischer
Amos Storkey
Stochastic Gradient Descent (SGD) based training of neural networks with a large learning rate or a small batch-size typically ends in well-… (see more)generalizing, flat regions of the weight space, as indicated by small eigenvalues of the Hessian of the training loss. However, the curvature along the SGD trajectory is poorly understood. An empirical investigation shows that initially SGD visits increasingly sharp regions, reaching a maximum sharpness determined by both the learning rate and the batch-size of SGD. When studying the SGD dynamics in relation to the sharpest directions in this initial phase, we find that the SGD step is large compared to the curvature and commonly fails to minimize the loss along the sharpest directions. Furthermore, using a reduced learning rate along these directions can improve training speed while leading to both sharper and better generalizing solutions compared to vanilla SGD. In summary, our analysis of the dynamics of SGD in the subspace of the sharpest directions shows that they influence the regions that SGD steers to (where larger learning rate or smaller batch size result in wider regions visited), the overall training speed, and the generalization ability of the final model.
The Termination Critic
Anna Harutyunyan
Will Dabney
Diana Borsa
Nicolas Heess
Remi Munos
In this work, we consider the problem of autonomously discovering behavioral abstractions, or options, for reinforcement learning agents. We… (see more) propose an algorithm that focuses on the termination function, as opposed to - as is common - the policy. The termination function is usually trained to optimize a control objective: an option ought to terminate if another has better value. We offer a different, information-theoretic perspective, and propose that terminations should focus instead on the compressibility of the option’s encoding - arguably a key reason for using abstractions.To achieve this algorithmically, we leverage the classical options framework, and learn the option transition model as a “critic” for the termination function. Using this model, we derive gradients that optimize the desired criteria. We show that the resulting options are non-trivial, intuitively meaningful, and useful for learning.
Toward Requirements Specification for Machine-Learned Components
Mona Rahimi
Sahar Kokaly
Marsha Chechik
In current practice, the behavior of Machine-Learned Components (MLCs) is not sufficiently specified by the predefined requirements. Instead… (see more), they "learn" existing patterns from the available training data, and make predictions for unseen data when deployed. On the surface, their ability to extract patterns and to behave accordingly is specifically useful for hard-to-specify concepts in certain safety critical domains (e.g., the definition of a pedestrian in a pedestrian detection component in a vehicle). However, the lack of requirements specifications on their behaviors makes further software engineering tasks challenging for such components. This is especially concerning for tasks such as safety assessment and assurance. In this position paper, we call for more attention from the requirements engineering community on supporting the specification of requirements for MLCs in safety critical domains. Towards that end, we propose an approach to improve the process of requirements specification in which an MLC is developed and operates by explicitly specifying domain-related concepts. Our approach extracts a universally accepted benchmark for hard-to-specify concepts (e.g., "pedestrian") and can be used to identify gaps in the associated dataset and the constructed machine-learned model.
Towards Jumpy Planning
Akilesh
Suriya Singh
Anirudh Goyal
Alexander Neitz
Model-free reinforcement learning (RL) is a powerful paradigm for learning complex tasks but suffers from high sample inefficiency as well a… (see more)s ignorance of the environment dynamics. On the other hand, a model-based RL agent learns dynamical causal models of the environment and uses them to plan. However, using a model at the scale of time-steps (usually tens of milliseconds) is mostly unfeasible in practice due to compounding prediction errors and computational requirements for making vast numbers of model queries during the planning process. We propose to use a modelbased planner together with a goal-conditioned policy trained with model-free learning. We use a model-based planner that operates at higher levels of abstraction i.e., decision states and use modelfree RL between the decision states. We validate our approach in terms of transfer and generalization performance and show that it leads to improvement over model-based planner that jumps to states that are fixed timesteps ahead.
Towards Jumpy Planning
Akilesh
Suriya Singh
Anirudh Goyal
Alexander Neitz
Unsupervised State Representation Learning in Atari
Ankesh Anand
Evan Racah
Sherjil Ozair
Marc-Alexandre Côté
State representation learning, or the ability to capture latent generative factors of an environment, is crucial for building intelligent ag… (see more)ents that can perform a wide variety of tasks. Learning such representations without supervision from rewards is a challenging open problem. We introduce a method that learns state representations by maximizing mutual information across spatially and temporally distinct features of a neural encoder of the observations. We also introduce a new benchmark based on Atari 2600 games where we evaluate representations based on how well they capture the ground truth state variables. We believe this new framework for evaluating representation learning models will be crucial for future representation learning research. Finally, we compare our technique with other state-of-the-art generative and contrastive representation learning methods. The code associated with this work is available at this https URL
Updates of Equilibrium Prop Match Gradients of Backprop Through Time in an RNN with Static Input
Maxence Ernoult
Julie Grollier
Damien Querlioz
Benjamin Scellier
Equilibrium Propagation (EP) is a biologically inspired learning algorithm for convergent recurrent neural networks, i.e. RNNs that are fed … (see more)by a static input x and settle to a steady state. Training convergent RNNs consists in adjusting the weights until the steady state of output neurons coincides with a target y. Convergent RNNs can also be trained with the more conventional Backpropagation Through Time (BPTT) algorithm. In its original formulation EP was described in the case of real-time neuronal dynamics, which is computationally costly. In this work, we introduce a discrete-time version of EP with simplified equations and with reduced simulation time, bringing EP closer to practical machine learning tasks. We first prove theoretically, as well as numerically that the neural and weight updates of EP, computed by forward-time dynamics, are step-by-step equal to the ones obtained by BPTT, with gradients computed backward in time. The equality is strict when the transition function of the dynamics derives from a primitive function and the steady state is maintained long enough. We then show for more standard discrete-time neural network dynamics that the same property is approximately respected and we subsequently demonstrate training with EP with equivalent performance to BPTT. In particular, we define the first convolutional architecture trained with EP achieving ~ 1% test error on MNIST, which is the lowest error reported with EP. These results can guide the development of deep neural networks trained with EP.
Variational Temporal Abstraction
Taesup Kim
Sungjin Ahn
We introduce a variational approach to learning and inference of temporally hierarchical structure and representation for sequential data. W… (see more)e propose the Variational Temporal Abstraction (VTA), a hierarchical recurrent state space model that can infer the latent temporal structure and thus perform the stochastic state transition hierarchically. We also propose to apply this model to implement the jumpy imagination ability in imagination-augmented agent-learning in order to improve the efficiency of the imagination. In experiments, we demonstrate that our proposed method can model 2D and 3D visual sequence datasets with interpretable temporal structure discovery and that its application to jumpy imagination enables more efficient agent-learning in a 3D navigation task.
VideoNavQA: Bridging the Gap between Visual and Embodied Question Answering
Cătălina Cangea
Pietro Lio
Embodied Question Answering (EQA) is a recently proposed task, where an agent is placed in a rich 3D environment and must act based solely o… (see more)n its egocentric input to answer a given question. The desired outcome is that the agent learns to combine capabilities such as scene understanding, navigation and language understanding in order to perform complex reasoning in the visual world. However, initial advancements combining standard vision and language methods with imitation and reinforcement learning algorithms have shown EQA might be too complex and challenging for these techniques. In order to investigate the feasibility of EQA-type tasks, we build the VideoNavQA dataset that contains pairs of questions and videos generated in the House3D environment. The goal of this dataset is to assess question-answering performance from nearly-ideal navigation paths, while considering a much more complete variety of questions than current instantiations of the EQA task. We investigate several models, adapted from popular VQA methods, on this new benchmark. This establishes an initial understanding of how well VQA-style methods can perform within this novel EQA paradigm.
Wasserstein Dependency Measure for Representation Learning
Sherjil Ozair
Corey Lynch
Aäron van den Oord
Sergey Levine
Pierre Sermanet
Mutual information maximization has emerged as a powerful learning objective for unsupervised representation learning obtaining state-of-the… (see more)-art performance in applications such as object recognition, speech recognition, and reinforcement learning. However, such approaches are fundamentally limited since a tight lower bound of mutual information requires sample size exponential in the mutual information. This limits the applicability of these approaches for prediction tasks with high mutual information, such as in video understanding or reinforcement learning. In these settings, such techniques are prone to overfit, both in theory and in practice, and capture only a few of the relevant factors of variation. This leads to incomplete representations that are not optimal for downstream tasks. In this work, we empirically demonstrate that mutual information-based representation learning approaches do fail to learn complete representations on a number of designed and real-world tasks. To mitigate these problems we introduce the Wasserstein dependency measure, which learns more complete representations by using the Wasserstein distance instead of the KL divergence in the mutual information estimator. We show that a practical approximation to this theoretically motivated solution, constructed using Lipschitz constraint techniques from the GAN literature, achieves substantially improved results on tasks where incomplete representations are a major challenge.
»Deep Learning ist keine Religion«
Andreas Sudmann