We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
In many application domains such as computer vision, Convolutional Layers (CLs) are key to the accuracy of deep learning methods. However, i… (see more)t is often required to assemble a large number of CLs, each containing thousands of parameters, in order to reach state-of-the-art accuracy, thus resulting in complex and demanding systems that are poorly fitted to resource-limited devices. Recently, methods have been proposed to replace the generic convolution operator by the combination of a shift operation and a simpler
2021-01-10
2020 25th International Conference on Pattern Recognition (ICPR) (published)
The patient advisor, an organizational resource as a lever for an enhanced oncology patient experience (PAROLE-onco): a longitudinal multiple case study protocol
Effective communication is about the dissemination of properly worded meaningful ideas/messages that are comprehensible to both sen… (see more)der and receiver and which ultimately can attract the desired response or feedback. For machines to engage in a conversation, it is therefore essential to enable them to clarify ambiguity and achieve a common ground. We introduce Abg-CoQA, a novel dataset for clarifying ambiguity in Conversational Question Answering systems. Our dataset contains 9k questions with answers where 1k questions are ambiguous, obtained from 4k text passages from five diverse domains. For ambiguous questions, a clarification conversational turn is collected. We evaluate strong language generation models and conversational question answering models on Abg-CoQA. The best-performing system achieves a BLEU-1 score of 12.9% on generating clarification question, which is 27.9 points behind human performance (40.8%); and a F1 score of 40.1% on question answering after clarification, which is 35.1 points behind human performance (75.2%), indicating there is ample room for improvement.
2021-01-01
Conference on Automated Knowledge Base Construction (published)
Strong empirical evidence that one machine-learning algorithm A outperforms another one B ideally calls for multiple trials optimizing the l… (see more)earning pipeline over sources of variation such as data sampling, data augmentation, parameter initialization, and hyperparameters choices. This is prohibitively expensive, and corners are cut to reach conclusions. We model the whole benchmarking process, revealing that variance due to data sampling, parameter initialization and hyperparameter choice impact markedly the results. We analyze the predominant comparison methods used today in the light of this variance. We show a counter-intuitive result that adding more sources of variation to an imperfect estimator approaches better the ideal estimator at a 51 times reduction in compute cost. Building on these results, we study the error rate of detecting improvements, on five different deep-learning tasks/architectures. This study leads us to propose recommendations for performance comparisons.
Neural networks are known to be vulnerable to adversarial attacks -- slight but carefully constructed perturbations of the inputs which can … (see more)drastically impair the network's performance. Many defense methods have been proposed for improving robustness of deep networks by training them on adversarially perturbed inputs. However, these models often remain vulnerable to new types of attacks not seen during training, and even to slightly stronger versions of previously seen attacks. In this work, we propose a novel approach to adversarial robustness, which builds upon the insights from the domain adaptation field. Our method, called Adversarial Feature Desensitization (AFD), aims at learning features that are invariant towards adversarial perturbations of the inputs. This is achieved through a game where we learn features that are both predictive and robust (insensitive to adversarial attacks), i.e. cannot be used to discriminate between natural and adversarial data. Empirical results on several benchmarks demonstrate the effectiveness of the proposed approach against a wide range of attack types and attack strengths. Our code is available at https://github.com/BashivanLab/afd.
Transformers have been shown to be able to 001 perform deductive reasoning on a logical rule-002 base containing rules and statements writte… (see more)n 003 in natural language. Recent works show that 004 such models can also produce the reasoning 005 steps (i.e., the proof graph ) that emulate the 006 model’s logical reasoning process. But these 007 models behave as a black-box unit that emu-008 lates the reasoning process without any causal 009 constraints in the reasoning steps, thus ques-010 tioning the faithfulness. In this work, we frame 011 the deductive logical reasoning task as a causal 012 process by defining three modular components: 013 rule selection, fact selection, and knowledge 014 composition. The rule and fact selection steps 015 select the candidate rule and facts to be used 016 and then the knowledge composition combines 017 them to generate new inferences. This ensures 018 model faithfulness by assured causal relation 019 from the proof step to the inference reasoning. 020 To test our causal reasoning framework, we 021 propose C AUSAL R where the above three com-022 ponents are independently modeled by trans-023 formers. We observe that C AUSAL R is robust 024 to novel language perturbations, and is com-025 petitive with previous works on existing rea-026 soning datasets. Furthermore, the errors made 027 by C AUSAL R are more interpretable due to 028 the multi-modular approach compared to black-029 box generative models. 1 030
Automatic Fall Risk Detection based on Imbalanced Data
In recent years, the declining birthrate and aging population have gradually brought countries into an ageing society. Regarding accidents t… (see more)hat occur amongst the elderly, falls are an essential problem that quickly causes indirect physical loss. In this paper, we propose a pose estimation-based fall detection algorithm to detect fall risks. We use body ratio, acceleration and deflection as key features instead of using the body keypoints coordinates. Since fall data is rare in real-world situations, we train and evaluate our approach in a highly imbalanced data setting. We assess not only different imbalanced data handling methods but also different machine learning algorithms. After oversampling on our training data, the K-Nearest Neighbors (KNN) algorithm achieves the best performance. The F1 scores for three different classes, Normal, Fall, and Lying, are 1.00, 0.85 and 0.96, which is comparable to previous research. The experiment shows that our approach is more interpretable with the key feature from skeleton information. Moreover, it can apply in multi-people scenarios and has robustness on medium occlusion.