We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Generative Flow Networks (GFlowNets) have been introduced as a method to sample a diverse set of candidates in an active learning context, w… (see more)ith a training objective that makes them approximately sample in proportion to a given reward function. In this paper, we show a number of additional theoretical properties of GFlowNets. They can be used to estimate joint probability distributions and the corresponding marginal distributions where some variables are unspecified and, of particular interest, can represent distributions over composite objects like sets and graphs. GFlowNets amortize the work typically done by computationally expensive MCMC methods in a single but trained generative pass. They could also be used to estimate partition functions and free energies, conditional probabilities of supersets (supergraphs) given a subset (subgraph), as well as marginal distributions over all supersets (supergraphs) of a given set (graph). We introduce variations enabling the estimation of entropy and mutual information, sampling from a Pareto frontier, connections to reward-maximizing policies, and extensions to stochastic environments, continuous actions and modular energy functions.
Data scientists commonly use computational notebooks because they provide a good environment for testing multiple models. However, once the … (see more)scientist completes the code and finds the ideal model, he or she will have to dedicate time to clean up the code in order for others to easily understand it. In this paper, we perform a qualitative study on how scientists clean their code in hopes of being able to suggest a tool to automate this process. Our end goal is for tool builders to address possible gaps and provide additional aid to data scientists, who then can focus more on their actual work rather than the routine and tedious cleaning work. By sampling notebooks from GitHub and analyzing changes between subsequent commits, we identified common cleaning activities, such as changes to markdown (e.g., adding headers sections or descriptions) or comments (both deleting dead code and adding descriptions) as well as reordering cells. We also find that common cleaning activities differ depending on the intended purpose of the notebook. Our results provide a valuable foundation for tool builders and notebook users, as many identified cleaning activities could benefit from codification of best practices and dedicated tool support, possibly tailored depending on intended use.
2021-11-15
2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW) (published)
Data scientists reportedly spend a significant amount of their time in their daily routines on data wrangling, i.e. cleaning data and extrac… (see more)ting features. However, data wrangling code is often repetitive and error-prone to write. Moreover, it is easy to introduce subtle bugs when reusing and adopting existing code, which results in reduced model quality. To support data scientists with data wrangling, we present a technique to generate documentation for data wrangling code. We use (1) program synthesis techniques to automatically summarize data transformations and (2) test case selection techniques to purposefully select representative examples from the data based on execution information collected with tailored dynamic program analysis. We demonstrate that a JupyterLab extension with our technique can provide on-demand documentation for many cells in popular notebooks and find in a user study that users with our plugin are faster and more effective at finding realistic bugs in data wrangling code.
2021-11-15
2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE) (published)
In 1943, McCulloch and Pitts introduced a discrete recurrent neural network as a model for computation in brains. The work inspired breakthr… (see more)oughs such as the first computer design and the theory of finite automata. We focus on learning in Hopfield networks, a special case with symmetric weights and fixed-point attractor dynamics. Specifically, we explore minimum energy flow (MEF) as a scalable convex objective for determining network parameters. We catalog various properties of MEF, such as biological plausibility, and then compare to classical approaches in the theory of learning. Trained Hopfield networks can perform unsupervised clustering and define novel error-correcting coding schemes. They also efficiently find hidden structures (cliques) in graph theory. We extend this known connection from graphs to hypergraphs and discover n-node networks with robust storage of 2Ω(n1−ϵ) memories for any ϵ>0. In the case of graphs, we also determine a critical ratio of training samples at which networks generalize completely.
Although deep learning (DL) has achieved notable progress in speech enhancement (SE), further research is still required for a DL-based SE s… (see more)ystem to adapt effectively and efficiently to particular speakers. In this study, we propose a novel meta-learning-based speaker-adaptive SE approach (called OSSEM) that aims to achieve SE model adaptation in a one-shot manner. OSSEM consists of a modified transformer SE network and a speaker-specific masking (SSM) network. In practice, the SSM network takes an enrolled speaker embedding extracted using ECAPA-TDNN to adjust the input noisy feature through masking. To evaluate OSSEM, we designed a modified Voice Bank-DEMAND dataset, in which one utterance from the testing set was used for model adaptation, and the remaining utterances were used for testing the performance. Moreover, we set restrictions allowing the enhancement process to be conducted in real time, and thus designed OSSEM to be a causal SE system. Experimental results first show that OSSEM can effectively adapt a pretrained SE model to a particular speaker with only one utterance, thus yielding improved SE results. Meanwhile, OSSEM exhibits a competitive performance compared to state-of-the-art causal SE systems.
We introduce the Cut-and-Play, an efficient algorithm for computing equilibria in simultaneous non-cooperative games where players solve non… (see more)convex and possibly unbounded optimization problems. Our algorithm exploits an intrinsic relationship between the equilibria of the original nonconvex game and the ones of a convexified counterpart. In practice, Cut-and-Play formulates a series of convex approximations of the original game and refines them with techniques from integer programming, for instance, cutting planes and branching operations. We test our algorithm on two families of challenging nonconvex games involving discrete decisions and bilevel programs, and we empirically demonstrate that it efficiently computes equilibria and outperforms existing game-specific algorithms.