We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Outsourced diffusion sampling: Efficient posterior inference in latent spaces of generative models
Diffusion Probabilistic Models (DPMs) are powerful generative models that have achieved unparalleled success in a number of generative tasks… (see more). In this work, we aim to build inductive biases into the training and sampling of diffusion models to better accommodate the target distribution of the data to model. For topologically structured data, we devise a frequency-based noising operator to purposefully manipulate, and set, these inductive biases. We first show that appropriate manipulations of the noising forward process can lead DPMs to focus on particular aspects of the distribution to learn. We show that different datasets necessitate different inductive biases, and that appropriate frequency-based noise control induces increased generative performance compared to standard diffusion. Finally, we demonstrate the possibility of ignoring information at particular frequencies while learning. We show this in an image corruption and recovery task, where we train a DPM to recover the original target distribution after severe noise corruption.
This paper presents a practical application of Relative Trajectory Balance (RTB), a recently introduced off-policy reinforcement learning (R… (see more)L) objective that can asymptotically solve Bayesian inverse problems optimally. We extend the original work by using RTB to train conditional diffusion model posteriors from pretrained unconditional priors for challenging linear and non-linear inverse problems in vision, and science. We use the objective alongside techniques such as off-policy backtracking exploration to improve training. Importantly, our results show that existing training-free diffusion posterior methods struggle to perform effective posterior inference in latent space due to inherent biases.
Personalized machine learning models have gained significant importance in various domains, including healthcare. However, designing efficie… (see more)nt personalized models remains a challenge. Traditional approaches often involve training multiple sub-models for different population sub-groups, which can be costly and does not always guarantee improved performance across all sub-groups. This paper presents a novel approach to improving model performance at the sub-group level by leveraging bias and training a joint model. Our method involves a two-step process: first, we train a model to predict group attributes, and then we use this model to learn data-dependent biases to modulate a second model for diagnosis prediction. Our results demonstrate that this joint architecture achieves consistent performance gains across all sub-groups in the Heart dataset. Furthermore, in the mortality dataset, it improves performance in two of the four sub-groups. A comparison of our method with the traditional decoupled personalization method demonstrated a greater performance gain in the sub-groups with less harm. This approach offers a more effective and scalable solution for personalization of models, which could have positive impact in healthcare and other areas that require predictive models which take sub-group information into account.
Federated Learning is a machine learning paradigm where multiple clients collaboratively train a global model by exchanging their locally tr… (see more)ained model weights instead of raw data.
In the standard setting, every client trains the local model for the same number of epochs.
We introduce ALT (Adaptive Local Training), a simple yet effective feedback mechanism that could be introduced at the client side to limit unnecessary and degrading computations.
ALT dynamically adjusts the number of training epochs for each client based on the similarity between their local representations and the global one, ensuring that well-aligned clients can train longer without experiencing client drift. We evaluated ALT on federated partitions of the CIFAR-10 and TinyImageNet datasets, demonstrating its effectiveness in improving model convergence and stability.
Federated learning is a machine learning paradigm where multiple clients collaboratively train a global model by exchanging their locally tr… (see more)ained model weights instead of raw data. In the standard setting, every client trains the local model for the same number of epochs.
We introduce ALT (Adaptive Local Training), a simple yet effective feedback mechanism that can be exploited at the client side to limit unnecessary and degrading computations. ALT dynamically adjusts the number of training epochs for each client based on the similarity between their local representations and the global one, ensuring that well-aligned clients can train longer without experiencing client drift. We evaluated ALT on federated partitions of the CIFAR-10 and Tiny-ImageNet datasets, demonstrating its effectiveness in improving model convergence and stability.
Aligning visual features with language embeddings is a key challenge in vision-language models (VLMs). The performance of such models hinges… (see more) on having a good connector that maps visual features generated by a vision encoder to a shared embedding space with the LLM while preserving semantic similarity. Existing connectors, such as multilayer perceptrons (MLPs), often produce out-of-distribution or noisy inputs, leading to misalignment between the modalities. In this work, we propose a novel vision-text alignment method, AlignVLM, that maps visual features to a weighted average of LLM text embeddings. Our approach leverages the linguistic priors encoded by the LLM to ensure that visual features are mapped to regions of the space that the LLM can effectively interpret. AlignVLM is particularly effective for document understanding tasks, where scanned document images must be accurately mapped to their textual content. Our extensive experiments show that AlignVLM achieves state-of-the-art performance compared to prior alignment methods. We provide further analysis demonstrating improved vision-text feature alignment and robustness to noise.
Agents that can autonomously navigate the web through a graphical user interface (GUI) using a unified action space (e.g., mouse and keyboar… (see more)d actions) can require very large amounts of domain-specific expert demonstrations to achieve good performance. Low sample efficiency is often exacerbated in sparse-reward and large-action-space environments, such as a web GUI, where only a few actions are relevant in any given situation. In this work, we consider the low-data regime, with limited or no access to expert behavior. To enable sample-efficient learning, we explore the effect of constraining the action space through intent-based affordances -- i.e., considering in any situation only the subset of actions that achieve a desired outcome. We propose **Code as Generative Affordances**
Merging parameter-efficient task experts has recently gained growing attention as a way to build modular architectures that can be rapidly a… (see more)dapted on the fly for specific downstream tasks, without requiring additional fine-tuning. Typically, LoRA (Low-Rank Adaptation) serves as the foundational building block of such parameter-efficient modular architectures, leveraging low-rank weight structures to reduce the number of trainable parameters. In this paper, we study the properties of sparse adapters, which train only a subset of weights in the base neural network, as potential building blocks of modular architectures. First, we propose a simple method for training highly effective sparse adapters, which is conceptually simpler than existing methods in the literature and surprisingly outperforms both LoRA and full fine-tuning in our setting. Next, we investigate the merging properties of these sparse adapters by merging adapters for up to 20 natural language processing tasks, thus scaling beyond what is usually studied in the literature. Our findings demonstrate that sparse adapters yield superior in-distribution performance post-merging compared to LoRA or full model merging. Achieving strong held-out performance remains a challenge for all methods considered.
Generative AI has the potential to transform personalization and accessibility of education. However, it raises serious concerns about accur… (see more)acy and helping students become independent critical thinkers. In this study, we designed a helpful yet fallible AI "Peer" to help students correct fundamental physics misconceptions related to Newtonian mechanic concepts. In contrast to approaches that seek near-perfect accuracy to create an authoritative AI tutor or teacher, we directly inform students that this AI can answer up to 40\% of questions incorrectly. In a randomized controlled trial with 165 students, those who engaged in targeted dialogue with the AI Peer achieved post-test scores that were, on average, 10.5 percentage points higher—with over 20 percentage points higher normalized gain—than a control group that discussed physics history. Qualitative feedback indicated that 91% of the treatment group's AI interactions were rated as helpful. Furthermore, by comparing student performance on pre- and post-test questions about the same concept, along with experts' annotations of the AI interactions, we find initial evidence suggesting the improvement in performance does not depend on the correctness of the AI. With further research, the AI Peer paradigm described here could open new possibilities for how we learn, adapt to, and grow with AI.