Simulating Human Gaze with Neural Visual Attention
Leo Schwinn
Bjoern Eskofier
Dario Zanca
The Paradox of Choice: On the Role of Attention in Hierarchical Reinforcement Learning
Andrei Cristian Nica
Decision-making AI agents are often faced with two important challenges: the depth of the planning horizon, and the branching factor due to … (see more)having many choices. Hierarchical reinforcement learning methods aim to solve the first problem, by providing shortcuts that skip over multiple time steps. To cope with the breadth, it is desirable to restrict the agent's attention at each step to a reasonable number of possible choices. The concept of affordances (Gibson, 1977) suggests that only certain actions are feasible in certain states. In this work, we first characterize "affordances" as a "hard" attention mechanism that strictly limits the available choices of temporally extended options. We then investigate the role of hard versus soft attention in training data collection, abstract value learning in long-horizon tasks, and handling a growing number of choices. To this end, we present an online, model-free algorithm to learn affordances that can be used to further learn subgoal options. Finally, we identify and empirically demonstrate the settings in which the "paradox of choice" arises, i.e. when having fewer but more meaningful choices improves the learning speed and performance of a reinforcement learning agent.
Timeliness of reporting of SARS-CoV-2 seroprevalence results and their utility for infectious disease surveillance
Claire Donnici
Natasha Ilincic
Christian Cao
Caseng Zhang
Gabriel Deveaux
David A. Clifton
Niklas Bobrovitz
Rahul K. Arora
Unmasking the Lottery Ticket Hypothesis: Efficient Adaptive Pruning for Finding Winning Tickets
Mansheej Paul
Feng Chen
Brett W. Larsen
Jonathan Frankle
Surya Ganguli
Modern deep learning involves training costly, highly overparameterized networks, thus motivating the search for sparser networks that requi… (see more)re less compute and memory but can still be trained to the same accuracy as the full network (i.e. matching). Iterative magnitude pruning (IMP) is a state of the art algorithm that can find such highly sparse matching subnetworks, known as winning tickets, that can be retrained from initialization or an early training stage. IMP operates by iterative cycles of training, masking a fraction of smallest magnitude weights, rewinding unmasked weights back to an early training point, and repeating. Despite its simplicity, the underlying principles for when and how IMP finds winning tickets remain elusive. In particular, what useful information does an IMP mask found at the end of training convey to a rewound network near the beginning of training? We find that—at higher sparsities—pairs of pruned networks at successive pruning iterations are connected by a linear path with zero error barrier if and only if they are matching. This indicates that masks found at the end of training encodes information about the identity of an axial subspace that intersects a desired linearly connected mode of a matching sublevel set. We leverage this observation to design a simple adaptive pruning heuristic for speeding up the discovery of winning tickets and achieve a 30% reduction in computation time on CIFAR-100. These results make progress toward demystifying the existence of winning tickets with an eye towards enabling the development of more efficient pruning algorithms.
Author Correction: Gradient-based learning drives robust representations in recurrent neural networks by balancing compression and expansion
Maxwell J. Farrell
Stefano Recanatesi
Timothy Moore
Eric Todd SheaBrown
Causal inference from text: A commentary
David Blei
Aligning MAGMA by Few-Shot Learning and Finetuning
Jean-Charles Layoun
Alexis Roger
Adapting Triplet Importance of Implicit Feedback for Personalized Recommendation
Haolun Wu
Chen Ma
Yingxue Zhang
Ruiming Tang
Lifelong Online Learning from Accumulated Knowledge
Changjian Shui
William Wang
Ihsen Hedhli
Chi Man Wong
Feng Wan
Boyu Wang
In this article, we formulate lifelong learning as an online transfer learning procedure over consecutive tasks, where learning a given task… (see more) depends on the accumulated knowledge. We propose a novel theoretical principled framework, lifelong online learning, where the learning process for each task is in an incremental manner. Specifically, our framework is composed of two-level predictions: the prediction information that is solely from the current task; and the prediction from the knowledge base by previous tasks. Moreover, this article tackled several fundamental challenges: arbitrary or even non-stationary task generation process, an unknown number of instances in each task, and constructing an efficient accumulated knowledge base. Notably, we provide a provable bound of the proposed algorithm, which offers insights on the how the accumulated knowledge improves the predictions. Finally, empirical evaluations on both synthetic and real datasets validate the effectiveness of the proposed algorithm.
OptEmbed: Learning Optimal Embedding Table for Click-through Rate Prediction
Fuyuan Lyu
Xing Tang
Hong Zhu
Huifeng Guo
Yingxue Zhang
Ruiming Tang
Click-through rate (CTR) prediction model usually consists of three components: embedding table, feature interaction layer, and classifier. … (see more)Learning embedding table plays a fundamental role in CTR prediction from the view of the model performance and memory usage. The embedding table is a two-dimensional tensor, with its axes indicating the number of feature values and the embedding dimension, respectively. To learn an efficient and effective embedding table, recent works either assign various embedding dimensions for feature fields and reduce the number of embeddings respectively or mask the embedding table parameters. However, all these existing works cannot get an optimal embedding table. On the one hand, various embedding dimensions still require a large amount of memory due to the vast number of features in the dataset. On the other hand, decreasing the number of embeddings usually suffers from performance degradation, which is intolerable in CTR prediction. Finally, pruning embedding parameters will lead to a sparse embedding table, which is hard to be deployed. To this end, we propose an optimal embedding table learning framework OptEmbed, which provides a practical and general method to find an optimal embedding table for various base CTR models. Specifically, we propose pruning the redundant embeddings regarding corresponding features' importance by learnable pruning thresholds. Furthermore, we consider assigning various embedding dimensions as one single candidate architecture. To efficiently search the optimal embedding dimensions, we design a uniform embedding dimension sampling scheme to equally train all candidate architectures, meaning architecture-related parameters and learnable thresholds are trained simultaneously in one supernet. We then propose an evolution search method based on the supernet to find the optimal embedding dimensions for each field. Experiments on public datasets show that OptEmbed can learn a compact embedding table which can further improve the model performance.
Using Graph Algorithms to Pretrain Graph Completion Transformers
Jonathan Pilault
Mikhail Galkin
Bahare Fatemi
Perouz Taslakian
David Vasquez
Recent work on Graph Neural Networks has demonstrated that self-supervised pretraining can further enhance performance on downstream graph, … (see more)link, and node classification tasks. However, the efficacy of pretraining tasks has not been fully investigated for downstream large knowledge graph completion tasks. Using a contextualized knowledge graph embedding approach, we investigate five different pretraining signals, constructed using several graph algorithms and no external data, as well as their combination. We leverage the versatility of our Transformer-based model to explore graph structure generation pretraining tasks (i.e. path and k-hop neighborhood generation), typically inapplicable to most graph embedding methods. We further propose a new path-finding algorithm guided by information gain and find that it is the best-performing pretraining task across three downstream knowledge graph completion datasets. While using our new path-finding algorithm as a pretraining signal provides 2-3% MRR improvements, we show that pretraining on all signals together gives the best knowledge graph completion results. In a multitask setting that combines all pretraining tasks, our method surpasses the latest and strong performing knowledge graph embedding methods on all metrics for FB15K-237, on MRR and Hit@1 for WN18RRand on MRR and hit@10 for JF17K (a knowledge hypergraph dataset).
Inductive biases for deep learning of higher-level cognition
Anirudh Goyal