We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Towards personalized healthcare without harm via bias modulation
Clinical prediction models are often personalized to target heterogeneous sub-groups by using demographic attributes such as race and gender… (see more) to train the model. Traditional personalization approaches involve using demographic attributes in input features or training multiple sub-models for different population subgroups (decoupling model). However, these methods often harm the performance at the
subgroup level compared to non-personalized models. This paper presents a novel personalization method to improve model performance at the sub-group level. Our method involves a two-step process: first, we train a model to predict group attributes, and then we use this model to learn data-dependent biases to modulate a second model for diagnosis prediction. Our results demonstrate that this joint architecture achieves consistent performance gains across all sub-groups in the Heart dataset. Furthermore, in the mortality dataset, it improves performance in two of the four sub-groups. A comparison of our method with the traditional decoupled personalization method demonstrated a greater performance gain in the sub-groups with less harm. This approach offers a more effective and scalable solution for personalized models, which could have a positive impact in healthcare and other areas that require predictive models that take sub-group information into
account.
Proteins perform diverse biological functions, governed by the intricate relationship between their sequence and three-dimensional structure… (see more). While protein language models (PLMs) have demonstrated remarkable success in functional annotation and structure prediction, their potential for sequence-structure co-design remains underexplored. This limitation arises from pre-training objectives that favor masked token prediction over generative modeling. In this work, we systematically explore sampling strategies to enhance the generative capabilities of PLMs for co-design. Notably, we introduce a ranked iterative decoding with re-masking scheme, enabling PLMs to generate sequences and structures more effectively. Benchmarking ESM3 across multiple scales, we demonstrate that using PLMs effectively at sampling time for co-design tasks can outperform specialized architectures that lack comparable scaling properties. Our work advances the field of computational protein design by equipping PLMs with robust generative capabilities tailored to sequence-structure interdependence.
Proteins perform diverse biological functions, governed by the intricate relationship between their sequence and three-dimensional structure… (see more). While protein language models (PLMs) have demonstrated remarkable success in functional annotation and structure prediction, their potential for sequence-structure co-design remains underexplored. This limitation arises from pre-training objectives that favor masked token prediction over generative modeling. In this work, we systematically explore sampling strategies to enhance the generative capabilities of PLMs for co-design. Notably, we introduce a ranked iterative decoding with re-masking scheme, enabling PLMs to generate sequences and structures more effectively. Benchmarking ESM3 across multiple scales, we demonstrate that using PLMs effectively at sampling time for co-design tasks can outperform specialized architectures that lack comparable scaling properties. Our work advances the field of computational protein design by equipping PLMs with robust generative capabilities tailored to sequence-structure interdependence.
Federated Learning is a machine learning paradigm where multiple clients collaboratively train a global model by exchanging their locally tr… (see more)ained model weights instead of raw data.
In the standard setting, every client trains the local model for the same number of epochs.
We introduce ALT (Adaptive Local Training), a simple yet effective feedback mechanism that could be introduced at the client side to limit unnecessary and degrading computations.
ALT dynamically adjusts the number of training epochs for each client based on the similarity between their local representations and the global one, ensuring that well-aligned clients can train longer without experiencing client drift. We evaluated ALT on federated partitions of the CIFAR-10 and TinyImageNet datasets, demonstrating its effectiveness in improving model convergence and stability.
Federated learning is a machine learning paradigm where multiple clients collaboratively train a global model by exchanging their locally tr… (see more)ained model weights instead of raw data. In the standard setting, every client trains the local model for the same number of epochs.
We introduce ALT (Adaptive Local Training), a simple yet effective feedback mechanism that can be exploited at the client side to limit unnecessary and degrading computations. ALT dynamically adjusts the number of training epochs for each client based on the similarity between their local representations and the global one, ensuring that well-aligned clients can train longer without experiencing client drift. We evaluated ALT on federated partitions of the CIFAR-10 and Tiny-ImageNet datasets, demonstrating its effectiveness in improving model convergence and stability.
Aligning visual features with language embeddings is a key challenge in vision-language models (VLMs). The performance of such models hinges… (see more) on having a good connector that maps visual features generated by a vision encoder to a shared embedding space with the LLM while preserving semantic similarity. Existing connectors, such as multilayer perceptrons (MLPs), often produce out-of-distribution or noisy inputs, leading to misalignment between the modalities. In this work, we propose a novel vision-text alignment method, AlignVLM, that maps visual features to a weighted average of LLM text embeddings. Our approach leverages the linguistic priors encoded by the LLM to ensure that visual features are mapped to regions of the space that the LLM can effectively interpret. AlignVLM is particularly effective for document understanding tasks, where scanned document images must be accurately mapped to their textual content. Our extensive experiments show that AlignVLM achieves state-of-the-art performance compared to prior alignment methods. We provide further analysis demonstrating improved vision-text feature alignment and robustness to noise.
Agents that can autonomously navigate the web through a graphical user interface (GUI) using a unified action space (e.g., mouse and keyboar… (see more)d actions) can require very large amounts of domain-specific expert demonstrations to achieve good performance. Low sample efficiency is often exacerbated in sparse-reward and large-action-space environments, such as a web GUI, where only a few actions are relevant in any given situation. In this work, we consider the low-data regime, with limited or no access to expert behavior. To enable sample-efficient learning, we explore the effect of constraining the action space through *intent-based affordances* -- i.e., considering in any situation only the subset of actions that achieve a desired outcome. We propose **Code as Generative Affordances (
Agents that can autonomously navigate the web through a graphical user interface (GUI) using a unified action space (e.g., mouse and keyboar… (see more)d actions) can require very large amounts of domain-specific expert demonstrations to achieve good performance. Low sample efficiency is often exacerbated in sparse-reward and large-action-space environments, such as a web GUI, where only a few actions are relevant in any given situation. In this work, we consider the low-data regime, with limited or no access to expert behavior. To enable sample-efficient learning, we explore the effect of constraining the action space through intent-based affordances -- i.e., considering in any situation only the subset of actions that achieve a desired outcome. We propose **Code as Generative Affordances**
Merging parameter-efficient task experts has recently gained growing attention as a way to build modular architectures that can be rapidly a… (see more)dapted on the fly for specific downstream tasks, without requiring additional fine-tuning. Typically, LoRA (Low-Rank Adaptation) serves as the foundational building block of such parameter-efficient modular architectures, leveraging low-rank weight structures to reduce the number of trainable parameters. In this paper, we study the properties of sparse adapters, which train only a subset of weights in the base neural network, as potential building blocks of modular architectures. First, we propose a simple method for training highly effective sparse adapters, which is conceptually simpler than existing methods in the literature and surprisingly outperforms both LoRA and full fine-tuning in our setting. Next, we investigate the merging properties of these sparse adapters by merging adapters for up to 20 natural language processing tasks, thus scaling beyond what is usually studied in the literature. Our findings demonstrate that sparse adapters yield superior in-distribution performance post-merging compared to LoRA or full model merging. Achieving strong held-out performance remains a challenge for all methods considered.
Merging parameter-efficient task experts has recently gained growing attention as a way to build modular architectures that can be rapidly a… (see more)dapted on the fly for specific downstream tasks, without requiring additional fine-tuning. Typically, LoRA (Low-Rank Adaptation) serves as the foundational building block of such parameter-efficient modular architectures, leveraging low-rank weight structures to reduce the number of trainable parameters. In this paper, we study the properties of sparse adapters, which train only a subset of weights in the base neural network, as potential building blocks of modular architectures. First, we propose a simple method for training highly effective sparse adapters, which is conceptually simpler than existing methods in the literature and surprisingly outperforms both LoRA and full fine-tuning in our setting. Next, we investigate the merging properties of these sparse adapters by merging adapters for up to 20 natural language processing tasks, thus scaling beyond what is usually studied in the literature. Our findings demonstrate that sparse adapters yield superior in-distribution performance post-merging compared to LoRA or full model merging. Achieving strong held-out performance remains a challenge for all methods considered.