Portrait of Rohan Banerjee

Rohan Banerjee

Collaborating Alumni - Polytechnique Montréal
Supervisor
Co-supervisor
Research Topics
Computer Vision
Deep Learning
Medical Machine Learning

Publications

EPISeg: Automated segmentation of the spinal cord on echo planar images using open-access multi-center data
Merve Kaptan
Alexandra Tinnermann
Ali Khatibi
Alice Dabbagh
Christian Büchel
Christine S.W. Law
Christian W. Kündig
Csw Law
Dario Pfyffer
David J. Lythgoe
Dimitra Tsivaka
Dimitri Van De Ville
Falk Eippert
Fauziyya Muhammad
Gary H. Glover
Gergely David
Grace Haynes
Jan Haaker
Jonathan C. W. Brooks … (see 23 more)
Jürgen Finsterbusch
Katherine T. Martucci
Kimberly J. Hemmerling
Mahdi Mobarak-Abadi
Mark A. Hoggarth
Matthew A. Howard
Molly G. Bright
Nawal Kinany
Olivia S. Kowalczyk
Patrick Freund
Robert L. Barry
Sean Mackey
Shahabeddin Vahdat
Simon Schading
Stephen B. McMahon
Todd Parish
Véronique Marchand-Pauvert
Yufen Chen
Kenneth A. Weber
Zachary A. Smith
KA Weber
Benjamin De Leener
Functional magnetic resonance imaging (fMRI) of the spinal cord is relevant for studying sensation, movement, and autonomic function. Prepro… (see more)cessing of spinal cord fMRI data involves segmentation of the spinal cord on gradient-echo echo planar imaging (EPI) images. Current automated segmentation methods do not work well on these data, due to the low spatial resolution, susceptibility artifacts causing distortions and signal drop-out, ghosting, and motion-related artifacts. Consequently, this segmentation task demands a considerable amount of manual effort which takes time and is prone to user bias. In this work, we (i) gathered a multi-center dataset of spinal cord gradient-echo EPI with ground-truth segmentations and shared it on OpenNeuro https://openneuro.org/datasets/ds005143/versions/1.3.0, and (ii) developed a deep learning-based model, EPISeg, for the automatic segmentation of the spinal cord on gradient-echo EPI data. We observe a significant improvement in terms of segmentation quality compared to other available spinal cord segmentation models. Our model is resilient to different acquisition protocols as well as commonly observed artifacts in fMRI data. The training code is available at https://github.com/sct-pipeline/fmri-segmentation/, and the model has been integrated into the Spinal Cord Toolbox as a command-line tool.
EPISeg: Automated segmentation of the spinal cord on echo planar images using open-access multi-center data
Merve Kaptan
Alexandra Tinnermann
Ali Khatibi
Alice Dabbagh
Christian W. Kündig
Csw Law
Dario Pfyffer
David J. Lythgoe
Dimitra Tsivaka
Dimitri Van De Ville
Falk Eippert
Fauziyya Muhammad
Gary H. Glover
Gergely David
Grace Haynes
Jan Haaker
Jonathan C. W. Brooks
Jürgen Finsterbusch
Katherine T. Martucci … (see 20 more)
Kimberly J. Hemmerling
Mahdi Mobarak-Abadi
Mark A. Hoggarth
Matthew A. Howard
Molly G. Bright
Nawal Kinany
O. Kowalczyk
Patrick Freund
Robert L. Barry
Sean Mackey
Shahabeddin Vahdat
Simon Schading
Stephen B McMahon
Todd Parish
Véronique Marchand-Pauvert
Yufen Chen
Zachary A. Smith
KA Weber
Benjamin De Leener
Functional magnetic resonance imaging (fMRI) of the spinal cord is relevant for studying sensation, movement, and autonomic function. Prepro… (see more)cessing of spinal cord fMRI data involves segmentation of the spinal cord on gradient-echo echo planar imaging (EPI) images. Current automated segmentation methods do not work well on these data, due to the low spatial resolution, susceptibility artifacts causing distortions and signal drop-out, ghosting, and motion-related artifacts. Consequently, this segmentation task demands a considerable amount of manual effort which takes time and is prone to user bias. In this work, we (i) gathered a multi-center dataset of spinal cord gradient-echo EPI with ground-truth segmentations and shared it on OpenNeuro https://openneuro.org/datasets/ds005143/versions/1.3.0, and (ii) developed a deep learning-based model, EPISeg, for the automatic segmentation of the spinal cord on gradient-echo EPI data. We observe a significant improvement in terms of segmentation quality compared to other available spinal cord segmentation models. Our model is resilient to different acquisition protocols as well as commonly observed artifacts in fMRI data. The training code is available at https://github.com/sct-pipeline/fmri-segmentation/, and the model has been integrated into the Spinal Cord Toolbox as a command-line tool.
EPISeg: Automated segmentation of the spinal cord on echo planar images using open-access multi-center data
Merve Kaptan
Alexandra Tinnermann
Ali Khatibi
Alice Dabbagh
Christian W. Kündig
Csw Law
Dario Pfyffer
David J. Lythgoe
Dimitra Tsivaka
Dimitri Van De Ville
Falk Eippert
Fauziyya Muhammad
Gary H. Glover
Gergely David
Grace Haynes
Jan Haaker
Jonathan C. W. Brooks
Jürgen Finsterbusch
Katherine T. Martucci … (see 20 more)
Kimberly J. Hemmerling
Mahdi Mobarak-Abadi
Mark A. Hoggarth
Matthew A. Howard
Molly G. Bright
Nawal Kinany
O. Kowalczyk
Patrick Freund
Robert L. Barry
Sean Mackey
Shahabeddin Vahdat
Simon Schading
Stephen B McMahon
Todd Parish
Véronique Marchand-Pauvert
Yufen Chen
Zachary A. Smith
KA Weber
Benjamin De Leener
Functional magnetic resonance imaging (fMRI) of the spinal cord is relevant for studying sensation, movement, and autonomic function. Prepro… (see more)cessing of spinal cord fMRI data involves segmentation of the spinal cord on gradient-echo echo planar imaging (EPI) images. Current automated segmentation methods do not work well on these data, due to the low spatial resolution, susceptibility artifacts causing distortions and signal drop-out, ghosting, and motion-related artifacts. Consequently, this segmentation task demands a considerable amount of manual effort which takes time and is prone to user bias. In this work, we (i) gathered a multi-center dataset of spinal cord gradient-echo EPI with ground-truth segmentations and shared it on OpenNeuro https://openneuro.org/datasets/ds005143/versions/1.3.0, and (ii) developed a deep learning-based model, EPISeg, for the automatic segmentation of the spinal cord on gradient-echo EPI data. We observe a significant improvement in terms of segmentation quality compared to other available spinal cord segmentation models. Our model is resilient to different acquisition protocols as well as commonly observed artifacts in fMRI data. The training code is available at https://github.com/sct-pipeline/fmri-segmentation/, and the model has been integrated into the Spinal Cord Toolbox as a command-line tool.