GPAI Report & Policy Guide: Towards Substantive Equality in AI
Join us at Mila on November 26 for the launch of the report and policy guide that outlines actionable recommendations for building inclusive AI ecosystems.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
We present a reduction from reinforcement learning (RL) to no-regret online learning based on the saddle-point formulation of RL, by which "… (see more)any" online algorithm with sublinear regret can generate policies with provable performance guarantees. This new perspective decouples the RL problem into two parts: regret minimization and function approximation. The first part admits a standard online-learning analysis, and the second part can be quantified independently of the learning algorithm. Therefore, the proposed reduction can be used as a tool to systematically design new RL algorithms. We demonstrate this idea by devising a simple RL algorithm based on mirror descent and the generative-model oracle. For any
2020-06-03
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics (published)
Recent advances in variational inference enable the modelling of highly structured joint distributions, but are limited in their capacity to… (see more) scale to the high-dimensional setting of stochastic neural networks. This limitation motivates a need for scalable parameterizations of the noise generation process, in a manner that adequately captures the dependencies among the various parameters. In this work, we address this need and present the Kronecker Flow, a generalization of the Kronecker product to invertible mappings designed for stochastic neural networks. We apply our method to variational Bayesian neural networks on predictive tasks, PAC-Bayes generalization bound estimation, and approximate Thompson sampling in contextual bandits. In all setups, our methods prove to be competitive with existing methods and better than the baselines.
2020-06-03
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics (published)
Abstraction can improve the sample efficiency of reinforcement learning. However, the process of abstraction inherently discards information… (see more), potentially compromising an agent’s ability to represent high-value policies. To mitigate this, we here introduce combinations of state abstractions and options that are guaranteed to preserve the representation of near-optimal policies. We first define φ-relative options, a general formalism for analyzing the value loss of options paired with a state abstraction, and present necessary and sufficient conditions for φ-relative options to preserve near-optimal behavior in any finite Markov Decision Process. We further show that, under appropriate assumptions, φ-relative options can be composed to induce hierarchical abstractions that are also guaranteed to represent high-value policies.ion can improve the sample efficiency of reinforcement learning. However, the process of abstraction inherently discards information, potentially compromising an agent’s ability to represent high-value policies. To mitigate this, we here introduce combinations of state abstractions and options that are guaranteed to preserve the representation of near-optimal policies. We first define φ-relative options, a general formalism for analyzing the value loss of options paired with a state abstraction, and present necessary and sufficient conditions for φ-relative options to preserve near-optimal behavior in any finite Markov Decision Process. We further show that, under appropriate assumptions, φ-relative options can be composed to induce hierarchical abstractions that are also guaranteed to represent high-value policies.
2020-06-03
International Conference on Artificial Intelligence and Statistics (published)
Abstraction can improve the sample efficiency of reinforcement learning. However, the process of abstraction inherently discards information… (see more), potentially compromising an agent’s ability to represent high-value policies. To mitigate this, we here introduce combinations of state abstractions and options that are guaranteed to preserve the representation of near-optimal policies. We first define φ-relative options, a general formalism for analyzing the value loss of options paired with a state abstraction, and present necessary and sufficient conditions for φ-relative options to preserve near-optimal behavior in any finite Markov Decision Process. We further show that, under appropriate assumptions, φ-relative options can be composed to induce hierarchical abstractions that are also guaranteed to represent high-value policies.ion can improve the sample efficiency of reinforcement learning. However, the process of abstraction inherently discards information, potentially compromising an agent’s ability to represent high-value policies. To mitigate this, we here introduce combinations of state abstractions and options that are guaranteed to preserve the representation of near-optimal policies. We first define φ-relative options, a general formalism for analyzing the value loss of options paired with a state abstraction, and present necessary and sufficient conditions for φ-relative options to preserve near-optimal behavior in any finite Markov Decision Process. We further show that, under appropriate assumptions, φ-relative options can be composed to induce hierarchical abstractions that are also guaranteed to represent high-value policies.
2020-06-03
International Conference on Artificial Intelligence and Statistics (published)
Restless bandits are a class of sequential resource allocation problems concerned with allocating one or more resources among several altern… (see more)ative processes where the evolution of the process depends on the resource allocated to them. Such models capture the fundamental trade-offs between exploration and exploitation. In 1988, Whittle developed an index heuristic for restless bandit problems which has emerged as a popular solution approach due to its simplicity and strong empirical performance. The Whittle index heuristic is applicable if the model satisfies a technical condition known as indexability. In this paper, we present two general sufficient conditions for indexability and identify simpler to verify refinements of these conditions. We then present a general algorithm to compute Whittle index for indexable restless bandits. Finally, we present a detailed numerical study which affirms the strong performance of the Whittle index heuristic.