Validation of an AI-assisted Treatment Outcome Measure for Gender-Affirming Voice Care: Comparing AI Accuracy to Listener's Perception of Voice Femininity.
Shane Simon
Einav N. Silverstein
Lauren Timmons-Sund
Jeremy M. Pinto
Eugenia M. Castro
Karla D. O'dell
Michael M. Johns III
Wendy J. Mack
Yael Bensoussan
Validation of an AI-assisted Treatment Outcome Measure for Gender-Affirming Voice Care: Comparing AI Accuracy to Listener's Perception of Voice Femininity.
Shane Simon
Einav Silverstein
Lauren Timmons-Sund
Jeremy Pinto
M. Eugenia Castro
Karla O’Dell
Michael M. Johns III
Wendy J. Mack
Yael Bensoussan
XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented Languages
Sebastian Ruder
Jonathan H. Clark
Alexander Gutkin
Mihir Kale
Min Ma
Massimo Nicosia
Shruti Rijhwani
Parker Riley
Jean Michel Amath Sarr
Xinyi Wang
John Frederick Wieting
Nitish Gupta
Anna Katanova
Christo Kirov
Dana L Dickinson
Brian Roark
Bidisha Samanta
Connie Tao
Vera Axelrod … (see 7 more)
Isaac Rayburn Caswell
Colin Cherry
Dan Garrette
Reeve Ingle
Melvin Johnson
Dmitry Panteleev
Partha Talukdar
Data scarcity is a crucial issue for the development of highly multilingual NLP systems. Yet for many under-represented languages (ULs) -- l… (see more)anguages for which NLP re-search is particularly far behind in meeting user needs -- it is feasible to annotate small amounts of data. Motivated by this, we propose XTREME-UP, a benchmark defined by: its focus on the scarce-data scenario rather than zero-shot; its focus on user-centric tasks -- tasks with broad adoption by speakers of high-resource languages; and its focus on under-represented languages where this scarce-data scenario tends to be most realistic. XTREME-UP evaluates the capabilities of language models across 88 under-represented languages over 9 key user-centric technologies including ASR, OCR, MT, and information access tasks that are of general utility. We create new datasets for OCR, autocomplete, semantic parsing, and transliteration, and build on and refine existing datasets for other tasks. XTREME-UP provides methodology for evaluating many modeling scenarios including text-only, multi-modal (vision, audio, and text),supervised parameter tuning, and in-context learning. We evaluate commonly used models on the benchmark. We release all code and scripts to train and evaluate models
Learning domain-invariant classifiers for infant cry sounds
Charles Onu
Hemanth K. Sheetha
Arsenii Gorin
Active learning meets fractal decision boundaries: a cautionary tale from the Sitnikov three-body problem
Nicolas Payot
Mario Pasquato
Alessandro A. Trani
Chaotic systems such as the gravitational N-body problem are ubiquitous in astronomy. Machine learning (ML) is increasingly deployed to pred… (see more)ict the evolution of such systems, e.g. with the goal of speeding up simulations. Strategies such as active Learning (AL) are a natural choice to optimize ML training. Here we showcase an AL failure when predicting the stability of the Sitnikov three-body problem, the simplest case of N-body problem displaying chaotic behavior. We link this failure to the fractal nature of our classification problem's decision boundary. This is a potential pitfall in optimizing large sets of N-body simulations via AL in the context of star cluster physics, galactic dynamics, or cosmology.
Bayesian Imaging for Radio Interferometry with Score-Based Priors
No'e Dia
M. J. Yantovski-Barth
Alexandre Adam
Micah Bowles
Pablo Lemos
A. Scaife
U. Montŕeal
Ciela Institute
Flatiron Institute
Learning an Effective Evolution Equation for Particle-Mesh Simulations Across Cosmologies
Nicolas Payot
Pablo Lemos
Carolina Cuesta-lazaro
C. Modi
Silent bugs in deep learning frameworks: an empirical study of Keras and TensorFlow
Florian Tambon
Amin Nikanjam
Le An
Giuliano Antoniol
TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare
Ziyang Song
Qincheng Lu
Hao Xu
Mike He Zhu
Motivation: Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success in Natural Language Processing a… (see more)nd Computer Vision domains. However, the development of PTMs on healthcare time-series data is lagging behind. This underscores the limitations of the existing transformer-based architectures, particularly their scalability to handle large-scale time series and ability to capture long-term temporal dependencies. Methods: In this study, we present Timely Generative Pre-trained Transformer (TimelyGPT). TimelyGPT employs an extrapolatable position (xPos) embedding to encode trend and periodic patterns into time-series representations. It also integrates recurrent attention and temporal convolution modules to effectively capture global-local temporal dependencies. Materials: We evaluated TimelyGPT on two large-scale healthcare time series datasets corresponding to continuous biosignals and irregularly-sampled time series, respectively: (1) the Sleep EDF dataset consisting of over 1.2 billion timesteps; (2) the longitudinal healthcare administrative database PopHR, comprising 489,000 patients randomly sampled from the Montreal population. Results: In forecasting continuous biosignals, TimelyGPT achieves accurate extrapolation up to 6,000 timesteps of body temperature during the sleep stage transition, given a short look-up window (i.e., prompt) containing only 2,000 timesteps. For irregularly-sampled time series, TimelyGPT with a proposed time-specific inference demonstrates high top recall scores in predicting future diagnoses using early diagnostic records, effectively handling irregular intervals between clinical records. Together, we envision TimelyGPT to be useful in various health domains, including long-term patient health state forecasting and patient risk trajectory prediction. Availability: The open-sourced code is available at Github.
TimelyGPT: Extrapolatable Transformer Pre-training for Long-term Time-Series Forecasting in Healthcare
Ziyang Song
Qincheng Lu
Hao Xu
Mike He Zhu
Unraveling the Mysteries of Galaxy Clusters: Recurrent Inference Deconvolution of X-ray Spectra
C. L. Rhea
J. Hlavacek-Larrondo
Ralph P. Kraft
Ákos Bogdán
Alexandre Adam
H3K27me3 spreading organizes canonical PRC1 chromatin architecture to regulate developmental programs
Brian Krug
Bo Hu
Haifen Chen
Adam Ptack
Xiao Chen
Kristjan H. Gretarsson
Shriya Deshmukh
Nisha Kabir
Augusto Faria Andrade
Elias Jabbour
Ashot S. Harutyunyan
John J. Y. Lee
Maud Hulswit
Damien Faury
Caterina Russo
Xinjing Xu
Michael Johnston
Audrey Baguette
Nathan A. Dahl
Alexander G. Weil … (see 12 more)
Benjamin Ellezam
Rola Dali
Khadija Wilson
Benjamin A. Garcia
Rajesh Kumar Soni
Marco Gallo
Michael D. Taylor
Claudia Kleinman
Jacek Majewski
Nada Jabado
Chao Lu