Delivered in partnership with Indspire, this tailored career pathway is designed to empower Indigenous talent to learn, develop, and lead the evolution of AI. Applications for the 2025 program are open until January 31st.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
DsMLP: A Learning-Based Multi-Layer Perception for MIMO Detection Implemented by Dynamic Stochastic Computing
As the number of antennas increases in multi-input and multi-output (MIMO) systems, even linear detection methods suffer from sharply increa… (see more)sing complexity. This paper proposes a learning-based multi-layer perception (MLP), named dynamic stochastic multi-layer perception (DsMLP), which is implemented by dynamic stochastic computing (DSC). We first establish a similar form between the MLP structure and minimum mean square error (MMSE) matrix operations. Consequently, DsMLP transforms the complex computation problem into an optimization problem of MLP training. Due to the specific design of MLP structure, e.g., same input/output dimension and single layer without activation function, the mathematical representation of DsMLP is identical to the MMSE matrix operations. Therefore, DsMLP guarantees sound model explainability in mathematics, fast convergence in training, and low complexity in computation. Furthermore, we transform the MLP training process to the DSC domain and propose a hardware-efficient scheme for DsMLP. Compared with other state-of-the-art MIMO detectors, DsMLP achieves 1.2× energy efficiency and 1.74× area efficiency.
2022-01-01
IEEE Transactions on Signal Processing (published)
Online escort advertisement websites are widely used for advertising victims of human trafficking. Domain experts agree that advertising mul… (see more)tiple people in the same ad is a strong indicator of trafficking. Thus, extracting person names from the text of these ads can provide valuable clues for further analysis. However, Named-Entity Recognition (NER) on escort ads is challenging because the text can be noisy, colloquial and often lacking proper grammar and punctuation. Most existing state-of-the-art NER models fail to demonstrate satisfactory performance in this task. In this paper, we propose NEAT (Name Extraction Against Trafficking) for extracting person names. It effectively combines classic rule-based and dictionary extractors with a contextualized language model to capture ambiguous names (e.g penny, hazel) and adapts to adversarial changes in the text by expanding its dictionary. NEAT shows 19% improvement on average in the F1 classification score for name extraction compared to previous state-of-the-art in two domain-specific datasets.
The surging demand for multilingual dialogue systems often requires a costly labeling process for each language addition. For low resource l… (see more)anguages, human annotators are continuously tasked with the adaptation of resource-rich language utterances for each new domain. However, this prohibitive and impractical process can often be a bottleneck for low resource languages that are still without proper translation systems nor parallel corpus. In particular, it is difficult to obtain task-specific low resource language annotations for the English-derived creoles (e.g. Nigerian and Cameroonian Pidgin). To address this issue, we utilize the pretrained language models i.e. BART which has shown great potential in language generation/understanding – we propose to finetune the BART model to generate utterances in Pidgin by leveraging the proximity of the source and target languages, and utilizing positive and negative examples in constrastive training objectives. We collected and released the first parallel Pidgin-English conversation corpus in two dialogue domains and showed that this simple and effective technique is suffice to yield impressive results for English-to-Pidgin generation, which are two closely-related languages.
We present the results of the WMT’22 SharedTask on Large-Scale Machine Translation Evaluation for African Languages. The shared taskinclud… (see more)ed both a data and a systems track, alongwith additional innovations, such as a focus onAfrican languages and extensive human evaluation of submitted systems. We received 14system submissions from 8 teams, as well as6 data track contributions. We report a largeprogress in the quality of translation for Africanlanguages since the last iteration of this sharedtask: there is an increase of about 7.5 BLEUpoints across 72 language pairs, and the average BLEU scores went from 15.09 to 22.60.
Neurons in the brain have rich and adaptive input-output properties. Features such as diverse f-I curves and spike frequency adaptation are … (see more)known to place single neurons in optimal coding regimes when facing changing stimuli. Yet, it is still unclear how brain circuits exploit single neuron flexibility, and how network-level requirements may have shaped such cellular function. To answer this question, a multi-scaled approach is needed where the computations of single neurons and of neural circuits must be considered as a complete system. In this work, we use artificial neural networks to systematically investigate single neuron input-output adaptive mechanisms, optimized in an end-to-end fashion. Throughout the optimization process, each neuron has the liberty to modify its nonlinear activation function, parametrized to mimic f-I curves of biological neurons, and to learn adaptation strategies to modify activation functions in real-time during a task. We find that such networks show much-improved robustness to noise and changes in input statistics. Importantly, we find that this procedure recovers precise coding strategies found in biological neurons, such as gain scaling and fractional order differentiation/integration. Using tools from dynamical systems theory, we analyze the role of these emergent single neuron properties and argue that neural diversity and adaptation plays an active regularization role that enables neural circuits to optimally propagate information across time.
Neurons in the brain have rich and adaptive input-output properties. Features such as diverse f-I curves and spike frequency adaptation are … (see more)known to place single neurons in optimal coding regimes when facing changing stimuli. Yet, it is still unclear how brain circuits exploit single neuron flexibility, and how network-level requirements may have shaped such cellular function. To answer this question, a multi-scaled approach is needed where the computations of single neurons and of neural circuits must be considered as a complete system. In this work, we use artificial neural networks to systematically investigate single neuron input-output adaptive mechanisms, optimized in an end-to-end fashion. Throughout the optimization process, each neuron has the liberty to modify its nonlinear activation function, parametrized to mimic f-I curves of biological neurons, and to learn adaptation strategies to modify activation functions in real-time during a task. We find that such networks show much-improved robustness to noise and changes in input statistics. Importantly, we find that this procedure recovers precise coding strategies found in biological neurons, such as gain scaling and fractional order differentiation/integration. Using tools from dynamical systems theory, we analyze the role of these emergent single neuron properties and argue that neural diversity and adaptation plays an active regularization role that enables neural circuits to optimally propagate information across time.
The study of first-order optimization is sensitive to the assumptions made on the objective functions.
These assumptions induce complexity c… (see more)lasses which play a key role in worst-case analysis, including
the fundamental concept of algorithm optimality. Recent work argues that strong convexity and
smoothness—popular assumptions in literature—lead to a pathological definition of the condition
number. Motivated by this result, we focus on the class of functions
satisfying a lower restricted secant inequality and an upper error bound. On top of being robust to
the aforementioned pathological behavior and including some non-convex functions, this pair of
conditions displays interesting geometrical properties. In particular, the necessary and sufficient
conditions to interpolate a set of points and their gradients within the class can be separated into
simple conditions on each sampled gradient. This allows the performance estimation problem (PEP)
to be solved analytically, leading to a lower bound
on the convergence rate that proves gradient descent to be exactly optimal on this class of functions
among all first-order algorithms.
Plants are dynamic systems that are integral to our existence and survival. Plants face environment changes and adapt over time to their sur… (see more)rounding conditions. We argue that plant responses to an environmental stimulus are a good example of a real-world problem that can be approached within a reinforcement learning (RL)framework. With the objective of controlling a plant by moving the light source, we propose GrowSpace, as a new RL benchmark. The back-end of the simulator is implemented using the Space Colonisation Algorithm, a plant growing model based on competition for space. Compared to video game RL environments, this simulator addresses a real-world problem and serves as a test bed to visualize plant growth and movement in a faster way than physical experiments. GrowSpace is composed of a suite of challenges that tackle several problems such as control, multi-stage learning,fairness and multi-objective learning. We provide agent baselines alongside case studies to demonstrate the difficulty of the proposed benchmark.