Predicting the Population Risk of Suicide Using Routinely Collected Health Administrative Data in Quebec, Canada: Model-Based Synthetic Estimation Study
JianLi Wang
Fatemeh Gholi Zadeh Kharrat
Geneviève Gariépy
Jean-François Pelletier
Victoria Massamba
Pascale Lévesque
Mada Mohammed
Alain Lesage
Background Suicide is a significant public health issue. Many risk prediction tools have been developed to estimate an individual’s risk o… (see more)f suicide. Risk prediction models can go beyond individual risk assessment; one important application of risk prediction models is population health planning. Suicide is a result of the interaction among the risk and protective factors at the individual, health care system, and community levels. Thus, policy and decision makers can play an important role in suicide prevention. However, few prediction models for the population risk of suicide have been developed. Objective This study aims to develop and validate prediction models for the population risk of suicide using health administrative data, considering individual-, health system–, and community-level predictors. Methods We used a case-control study design to develop sex-specific risk prediction models for suicide, using the health administrative data in Quebec, Canada. The training data included all suicide cases (n=8899) that occurred from January 1, 2002, to December 31, 2010. The control group was a 1% random sample of living individuals in each year between January 1, 2002, and December 31, 2010 (n=645,590). Logistic regression was used to develop the prediction models based on individual-, health care system–, and community-level predictors. The developed model was converted into synthetic estimation models, which concerted the individual-level predictors into community-level predictors. The synthetic estimation models were directly applied to the validation data from January 1, 2011, to December 31, 2019. We assessed the performance of the synthetic estimation models with four indicators: the agreement between predicted and observed proportions of suicide, mean average error, root mean square error, and the proportion of correctly identified high-risk regions. Results The sex-specific models based on individual data had good discrimination (male model: C=0.79; female model: C=0.85) and calibration (Brier score for male model 0.01; Brier score for female model 0.005). With the regression-based synthetic models applied in the validation data, the absolute differences between the synthetic risk estimates and observed suicide risk ranged from 0% to 0.001%. The root mean square errors were under 0.2. The synthetic estimation model for males correctly predicted 4 of 5 high-risk regions in 8 years, and the model for females correctly predicted 4 of 5 high-risk regions in 5 years. Conclusions Using linked health administrative databases, this study demonstrated the feasibility and the validity of developing prediction models for the population risk of suicide, incorporating individual-, health system–, and community-level variables. Synthetic estimation models built on routinely collected health administrative data can accurately predict the population risk of suicide. This effort can be enhanced by timely access to other critical information at the population level.
A Randomized Controlled Simulation Trial of a Neonatal Resuscitation Digital Game Simulator for Labour and Delivery Room Staff
Christiane Bilodeau
Georg M. Schmölzer
Robust Knowledge Unlearning via Mechanistic Localizations
Phillip Huang Guo
Aaquib Syed
Abhay Sheshadri
Aidan Ewart
Towards Adversarially Robust Vision-Language Models: Insights from Design Choices and Prompt Formatting Techniques
Rishika Bhagwatkar
Shravan Nayak
Reza Bayat
Alexis Roger
Daniel Z Kaplan
Vision-Language Models (VLMs) have witnessed a surge in both research and real-world applications. However, as they becoming increasingly pr… (see more)evalent, ensuring their robustness against adversarial attacks is paramount. This work systematically investigates the impact of model design choices on the adversarial robustness of VLMs against image-based attacks. Additionally, we introduce novel, cost-effective approaches to enhance robustness through prompt formatting. By rephrasing questions and suggesting potential adversarial perturbations, we demonstrate substantial improvements in model robustness against strong image-based attacks such as Auto-PGD. Our findings provide important guidelines for developing more robust VLMs, particularly for deployment in safety-critical environments.
Voices Unheard: NLP Resources and Models for Yorùbá Regional Dialects
Orevaoghene Ahia
Aremu Anuoluwapo
Diana Abagyan
Hila Gonen
Daud Abolade
Noah A. Smith
Yulia Tsvetkov
Yoruba—an African language with roughly 47 million speakers—encompasses a continuum with several dialects. Recent efforts to develop NLP… (see more) technologies for African languages have focused on their standard dialects, resulting in disparities for dialects and varieties for which there are little to no resources or tools. We take steps towards bridging this gap by introducing a new high-quality parallel text and speech corpus; YORULECT across three domains and four regional yoruba dialects. To develop this corpus, we engaged native speakers, traveling to communities where these dialects are spoken, to collect text and speech data. Using our newly created corpus, we conducted extensive experiments on (text) machine translation, automatic speech recognition, and speech-to-text translation. Our results reveal substantial performance disparities between standard yoruba and the other dialects across all tasks. However, we also show that with dialect-adaptive finetuning, we are able to narrow this gap. We believe our dataset and experimental analysis will contribute greatly to developing NLP tools for Yoruba and its dialects, and potentially for other African languages, by improving our understanding of existing challenges and offering a high-quality dataset for further development. We will release YORULECT dataset and models publicly under an open license.
A Context-Driven Approach for Co-Auditing Smart Contracts with The Support of GPT-4 code interpreter
Mohamed Salah Bouafif
Chen Zheng
Ilham Qasse
Ed Zulkoski
Mohammad Hamdaqa
The surge in the adoption of smart contracts necessitates rigorous auditing to ensure their security and reliability. Manual auditing, altho… (see more)ugh comprehensive, is time-consuming and heavily reliant on the auditor's expertise. With the rise of Large Language Models (LLMs), there is growing interest in leveraging them to assist auditors in the auditing process (co-auditing). However, the effectiveness of LLMs in smart contract co-auditing is contingent upon the design of the input prompts, especially in terms of context description and code length. This paper introduces a novel context-driven prompting technique for smart contract co-auditing. Our approach employs three techniques for context scoping and augmentation, encompassing code scoping to chunk long code into self-contained code segments based on code inter-dependencies, assessment scoping to enhance context description based on the target assessment goal, thereby limiting the search space, and reporting scoping to force a specific format for the generated response. Through empirical evaluations on publicly available vulnerable contracts, our method demonstrated a detection rate of 96\% for vulnerable functions, outperforming the native prompting approach, which detected only 53\%. To assess the reliability of our prompting approach, manual analysis of the results was conducted by expert auditors from our partner, Quantstamp, a world-leading smart contract auditing company. The experts' analysis indicates that, in unlabeled datasets, our proposed approach enhances the proficiency of the GPT-4 code interpreter in detecting vulnerabilities.
Data harmonization for Advancing research on Personalized Rehabilitation Interventions for Patients with Traumatic Brain Injury and Stroke: A proof of concept
Dorra Rakia Allegue
Despoina Petsani
Nathalie Ponthon
Evdokimos Konstantinidis
Panagiotis Bamidis
Eva Kehayia
Sara Ahmed
Stroke and traumatic brain injury (TBI) are leading causes of morbidity and mortality, affecting survivors’ mobility and social participat… (see more)ion. Although personalized interventions could positively impact survivors' recovery, the effectiveness of such interventions remains unclear. Open-access data repositories can provide access to multiple shared data which could help uncover new evidence of effective interventions; however, harmonizing data between different studies requires many steps to make it possible given the various methods of data collection, intervention characteristics and population sociodemographic profile. This proof-of-concept study aimed to describe the steps and anchors that contributed to the development of guiding frameworks to harmonize data across different studies. Data were extracted from the Federal Interagency Traumatic Brain Injury Research (FITBIR) repository and stored on an online cloud platform. The outcome measures were mapped to mobility determinants using the International Classification of Functioning, Disability, and Health (ICF) and Webber framework. The intervention's effect was categorized according to the Minimal Clinically Important Difference (MCID)s of the measures administered. The study proposed a novel framework for intervention features, which aims to enhance our understanding of the mechanisms of action and potential impact of rehabilitation interventions. The framework classified interventions based on their nature, context, specific body systems, dosage, caregiver assistance, and behaviour change strategies. In conclusion, this study demonstrated the feasibility of harmonizing data extracted from different sources in the FITBIR repository. Leveraging existing open databases offers tremendous opportunities to advance research on personalized interventions for patients with TBI and stroke and inform decision-making during transitions.
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers
Jonas Ngnaw'e
Sabyasachi Sahoo
Yann Pequignot
Frederic Precioso
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers
Jonas Ngnaw'e
Sabyasachi Sahoo
Yann Batiste Pequignot
Fr'ed'eric Precioso
Despite extensive research on adversarial training strategies to improve robustness, the decisions of even the most robust deep learning mod… (see more)els can still be quite sensitive to imperceptible perturbations, creating serious risks when deploying them for high-stakes real-world applications. While detecting such cases may be critical, evaluating a model's vulnerability at a per-instance level using adversarial attacks is computationally too intensive and unsuitable for real-time deployment scenarios. The input space margin is the exact score to detect non-robust samples and is intractable for deep neural networks. This paper introduces the concept of margin consistency -- a property that links the input space margins and the logit margins in robust models -- for efficient detection of vulnerable samples. First, we establish that margin consistency is a necessary and sufficient condition to use a model's logit margin as a score for identifying non-robust samples. Next, through comprehensive empirical analysis of various robustly trained models on CIFAR10 and CIFAR100 datasets, we show that they indicate strong margin consistency with a strong correlation between their input space margins and the logit margins. Then, we show that we can effectively use the logit margin to confidently detect brittle decisions with such models and accurately estimate robust accuracy on an arbitrarily large test set by estimating the input margins only on a small subset. Finally, we address cases where the model is not sufficiently margin-consistent by learning a pseudo-margin from the feature representation. Our findings highlight the potential of leveraging deep representations to efficiently assess adversarial vulnerability in deployment scenarios.
Learning to Design Data-structures: A Case Study of Nearest Neighbor Search
Omar Salemohamed
Vatsal Sharan
Shivam Garg
Gregory Valiant
We propose a general framework for automating data-structure design and apply it to the problem of nearest neighbor search. Our model adapts… (see more) to the underlying data distribution and provides fine-grained control over query and space complexity, enabling the discovery of solutions tailored to problem-specific constraints. We are able to reverse-engineer learned algorithms in several settings. In 1D, the model discovers optimal distribution (in)dependent algorithms such as binary search and variants of interpolation search. In higher dimensions, the model learns solutions that resemble K-d trees in some regimes, while in others, have elements of locality-sensitive hashing.
Mixture of Experts in a Mixture of RL settings
Timon Willi
Johan Samir Obando Ceron
Jakob Nicolaus Foerster
Mixtures of Experts (MoEs) have gained prominence in (self-)supervised learning due to their enhanced inference efficiency, adaptability to … (see more)distributed training, and modularity. Previous research has illustrated that MoEs can significantly boost Deep Reinforcement Learning (DRL) performance by expanding the network's parameter count while reducing dormant neurons, thereby enhancing the model's learning capacity and ability to deal with non-stationarity. In this work, we shed more light on MoEs' ability to deal with non-stationarity and investigate MoEs in DRL settings with"amplified"non-stationarity via multi-task training, providing further evidence that MoEs improve learning capacity. In contrast to previous work, our multi-task results allow us to better understand the underlying causes for the beneficial effect of MoE in DRL training, the impact of the various MoE components, and insights into how best to incorporate them in actor-critic-based DRL networks. Finally, we also confirm results from previous work.
BayTTA: Uncertainty-aware medical image classification with optimized test-time augmentation using Bayesian model averaging
Zeinab Sherkatghanad
Moloud Abdar
Mohammadreza Bakhtyari
Test-time augmentation (TTA) is a well-known technique employed during the testing phase of computer vision tasks. It involves aggregating m… (see more)ultiple augmented versions of input data. Combining predictions using a simple average formulation is a common and straightforward approach after performing TTA. This paper introduces a novel framework for optimizing TTA, called BayTTA (Bayesian-based TTA), which is based on Bayesian Model Averaging (BMA). First, we generate a model list associated with different variations of the input data created through TTA. Then, we use BMA to combine model predictions weighted by their respective posterior probabilities. Such an approach allows one to take into account model uncertainty, and thus to enhance the predictive performance of the related machine learning or deep learning model. We evaluate the performance of BayTTA on various public data, including three medical image datasets comprising skin cancer, breast cancer, and chest X-ray images and two well-known gene editing datasets, CRISPOR and GUIDE-seq. Our experimental results indicate that BayTTA can be effectively integrated into state-of-the-art deep learning models used in medical image analysis as well as into some popular pre-trained CNN models such as VGG-16, MobileNetV2, DenseNet201, ResNet152V2, and InceptionRes-NetV2, leading to the enhancement in their accuracy and robustness performance.