We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Advanced MRI metrics improve the prediction of baseline disease severity for individuals with degenerative cervical myelopathy.
This chapter explores the foundational concept of robustness in Machine Learning (ML) and its integral role in establishing trustworthiness … (see more)in Artificial Intelligence (AI) systems. The discussion begins with a detailed definition of robustness, portraying it as the ability of ML models to maintain stable performance across varied and unexpected environmental conditions. ML robustness is dissected through several lenses: its complementarity with generalizability; its status as a requirement for trustworthy AI; its adversarial vs non-adversarial aspects; its quantitative metrics; and its indicators such as reproducibility and explainability. The chapter delves into the factors that impede robustness, such as data bias, model complexity, and the pitfalls of underspecified ML pipelines. It surveys key techniques for robustness assessment from a broad perspective, including adversarial attacks, encompassing both digital and physical realms. It covers non-adversarial data shifts and nuances of Deep Learning (DL) software testing methodologies. The discussion progresses to explore amelioration strategies for bolstering robustness, starting with data-centric approaches like debiasing and augmentation. Further examination includes a variety of model-centric methods such as transfer learning, adversarial training, and randomized smoothing. Lastly, post-training methods are discussed, including ensemble techniques, pruning, and model repairs, emerging as cost-effective strategies to make models more resilient against the unpredictable. This chapter underscores the ongoing challenges and limitations in estimating and achieving ML robustness by existing approaches. It offers insights and directions for future research on this crucial concept, as a prerequisite for trustworthy AI systems.
This chapter explores the foundational concept of robustness in Machine Learning (ML) and its integral role in establishing trustworthiness … (see more)in Artificial Intelligence (AI) systems. The discussion begins with a detailed definition of robustness, portraying it as the ability of ML models to maintain stable performance across varied and unexpected environmental conditions. ML robustness is dissected through several lenses: its complementarity with generalizability; its status as a requirement for trustworthy AI; its adversarial vs non-adversarial aspects; its quantitative metrics; and its indicators such as reproducibility and explainability. The chapter delves into the factors that impede robustness, such as data bias, model complexity, and the pitfalls of underspecified ML pipelines. It surveys key techniques for robustness assessment from a broad perspective, including adversarial attacks, encompassing both digital and physical realms. It covers non-adversarial data shifts and nuances of Deep Learning (DL) software testing methodologies. The discussion progresses to explore amelioration strategies for bolstering robustness, starting with data-centric approaches like debiasing and augmentation. Further examination includes a variety of model-centric methods such as transfer learning, adversarial training, and randomized smoothing. Lastly, post-training methods are discussed, including ensemble techniques, pruning, and model repairs, emerging as cost-effective strategies to make models more resilient against the unpredictable. This chapter underscores the ongoing challenges and limitations in estimating and achieving ML robustness by existing approaches. It offers insights and directions for future research on this crucial concept, as a prerequisite for trustworthy AI systems.
Electricity price forecasting is a challenging task for decision-makers in deregulated power markets due to the inherent characteristics of … (see more)electricity prices, e.g., high frequency and volatility. Therefore, accurate forecasting of electricity prices can assist market participants in maximizing their profit. Accordingly, we proposed a novel hybrid Deep Learning model to forecast one-step, two-step, and three-step ahead Ontario electricity prices based on a Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU). Our model consists of three consecutive CNN-GRU models combined in parallel with different input data. We downsampled input data via pooling layers at the beginning of two streams of the model to capture different frequencies of price patterns concurrently. Also, a set of external variables, including previous prices, electricity load, generation, import and export, and weather data, were considered in our forecasting models to test whether these features improve the efficiency of the models. Finally, three experiments in various weeks of 2022 were carried out in the Ontario electricity market to assess the model. The results indicate that the proposed model reduced the forecasting error significantly by 63.3% in the first experiment, 41.8% in the second, and 28.2% in the third, on average, with respect to a Root Mean Square Error (RMSE). Also, the proposed model was compared with outperformed several baseline models, including statistical time-series, Machine Learning, and Deep Learning models. Furthermore, the comparison of results in univariate and multivariate settings indicated that adding variables to forecasting models did not help reduce forecasting errors.
We introduce RecurrentGemma, a family of open language models which uses Google's novel Griffin architecture. Griffin combines linear recurr… (see more)ences with local attention to achieve excellent performance on language. It has a fixed-sized state, which reduces memory use and enables efficient inference on long sequences. We provide two sizes of models, containing 2B and 9B parameters, and provide pre-trained and instruction tuned variants for both. Our models achieve comparable performance to similarly-sized Gemma baselines despite being trained on fewer tokens.
Evaluating autonomous vehicle stacks (AVs) in simulation typically involves replaying driving logs from real-world recorded traffic. However… (see more), agents replayed from offline data are not reactive and hard to intuitively control. Existing approaches address these challenges by proposing methods that rely on heuristics or generative models of real-world data but these approaches either lack realism or necessitate costly iterative sampling procedures to control the generated behaviours. In this work, we take an alternative approach and propose CtRL-Sim, a method that leverages return-conditioned offline reinforcement learning (RL) to efficiently generate reactive and controllable traffic agents. Specifically, we process real-world driving data through a physics-enhanced Nocturne simulator to generate a diverse offline RL dataset, annotated with various rewards. With this dataset, we train a return-conditioned multi-agent behaviour model that allows for fine-grained manipulation of agent behaviours by modifying the desired returns for the various reward components. This capability enables the generation of a wide range of driving behaviours beyond the scope of the initial dataset, including adversarial behaviours. We show that CtRL-Sim can generate realistic safety-critical scenarios while providing fine-grained control over agent behaviours.