Publications

Green Federated Learning
Ashkan Yousefpour
Sheng Guo
Ashish V. Shenoy
Sayan Ghosh
Pierre Stock
Kiwan Maeng
Schalk-Willem Kruger
Carole-Jean Wu
Ilya Mironov
The rapid progress of AI is fueled by increasingly large and computationally intensive machine learning models and datasets. As a consequenc… (see more)e, the amount of compute used in training state-of-the-art models is exponentially increasing (doubling every 10 months between 2015 and 2022), resulting in a large carbon footprint. Federated Learning (FL) - a collaborative machine learning technique for training a centralized model using data of decentralized entities - can also be resource-intensive and have a significant carbon footprint, particularly when deployed at scale. Unlike centralized AI that can reliably tap into renewables at strategically placed data centers, cross-device FL may leverage as many as hundreds of millions of globally distributed end-user devices with diverse energy sources. Green AI is a novel and important research area where carbon footprint is regarded as an evaluation criterion for AI, alongside accuracy, convergence speed, and other metrics. In this paper, we propose the concept of Green FL, which involves optimizing FL parameters and making design choices to minimize carbon emissions consistent with competitive performance and training time. The contributions of this work are two-fold. First, we adopt a data-driven approach to quantify the carbon emissions of FL by directly measuring real-world at-scale FL tasks running on millions of phones. Second, we present challenges, guidelines, and lessons learned from studying the trade-off between energy efficiency, performance, and time-to-train in a production FL system. Our findings offer valuable insights into how FL can reduce its carbon footprint, and they provide a foundation for future research in the area of Green AI.
A Novel Model for Novelty: Modeling the Emergence of Innovation from Cumulative Culture
Natalie Kastel
Posthoc Interpretation via Quantization
In this paper, we introduce a new approach, called Posthoc Interpretation via Quantization (PIQ), for interpreting decisions made by trained… (see more) classifiers. Our method utilizes vector quantization to transform the representations of a classifier into a discrete, class-specific latent space. The class-specific codebooks act as a bottleneck that forces the interpreter to focus on the parts of the input data deemed relevant by the classifier for making a prediction. Our model formulation also enables learning concepts by incorporating the supervision of pretrained annotation models such as state-of-the-art image segmentation models. We evaluated our method through quantitative and qualitative studies involving black-and-white images, color images, and audio. As a result of these studies we found that PIQ generates interpretations that are more easily understood by participants to our user studies when compared to several other interpretation methods in the literature.
Electromagnetic interference shielding in lightweight carbon xerogels
Biporjoy Sarkar
Floriane Miquet-Westphal
Sanyasi Bobbara
Ben George
David Dousset
Ke Wu
Fabio Cicoira
With the increasing use of high-frequency electronic and wireless devices, electromagnetic interference (EMI) has become a growing concern d… (see more)ue to its potential impact on both electronic devices and human health. In this study, we demonstrated the performance of lightweight, electrically conducting 3D resorcinol-formaldehyde carbon xerogels, of 2.4 mm thickness, as an EMI shieldin the frequency range of 10–15 GHz (X-Ku band). The brittle carbon xerogels revealed complex porous structures with irregularly shaped pores that were randomly distributed. Electrochemical characterization revealed that the material behaved as an electrical double-layer capacitor. The carbon xerogels displayed reflection-dominated (∼ 84%) shielding behavior, with a total EMI shielding effectiveness (SE) value of ∼ 61 dB. The absorption process also contributed (∼ 16%) to the total SE. This behavior is attributed to the carbon xerogels' complex porous network, which effectively suppresses EM waves.
Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT
Vincent Andrearczyk
Valentin Oreiller
Moamen A. Abobakr
Azadeh Akhavanallaf
Panagiotis Balermpas
Sarah Boughdad
Leo Capriotti
Joel Castelli
Catherine Cheze Le Rest
Pierre Decazes
Ricardo Correia
D. El-Habashy
Hesham M. Elhalawani
C. Fuller
Mario Jreige
Yomna Khamis
Agustina La Greca Saint-Esteven
A. Mohamed
M. Naser
John O. Prior … (see 11 more)
Su Ruan
Stephanie Tanadini-Lang
Olena Tankyevych
Yazdan Salimi
Pierre Véra
Dimitris Visvikis
K. Wahid
Habib Zaidi
Mathieu Hatt
Adrien Depeursinge
Behavioral Cloning for Crystal Design
Prashant Govindarajan
Santiago Miret
Jarrid Rector-Brooks
Mariano Phielipp
Janarthanan Rajendran
Solid-state materials, which are made up of periodic 3D crystal structures, are particularly useful for a variety of real-world applications… (see more) such as batteries, fuel cells and catalytic materials. Designing solid-state materials, especially in a robust and automated fashion, remains an ongoing challenge. To further the automated design of crystalline materials, we propose a method to learn to design valid crystal structures given a crystal skeleton. By incorporating Euclidean equivariance into a policy network, we portray the problem of designing new crystals as a sequential prediction task suited for imitation learning. At each step, given an incomplete graph of a crystal skeleton, an agent assigns an element to a specific node. We adopt a behavioral cloning strategy to train the policy network on data consisting of curated trajectories generated from known crystals.
Transitions between cognitive topographies: contributions of network structure, neuromodulation, and disease
Andrea I. Luppi
S. Parker Singleton
Justine Y. Hansen
Amy Kuceyeski
Richard F. Betzel
Bratislav Mišić
Instance-Conditioned GAN Data Augmentation for Representation Learning
Pietro Astolfi
Arantxa Casanova
Jakob Verbeek
Michal Drozdzal
Analysis of gene expression and use of connectivity mapping to identify drugs for treatment of human glomerulopathies
Chen-Fang Chung
Joan Papillon
José R. Navarro-Betancourt
Julie Guillemette
Ameya Bhope
Andrey V. Cybulsky
Applying the column generation method to the intensity modulated high dose rate brachytherapy inverse planning problem
Majd Antaki
Marc-André Renaud
Marc Morcos
Jan Seuntjens
Optimization of the location and design of urban green spaces
Caroline Leboeuf
Yan Kestens
Benoit Thierry
Proactive Contact Tracing
Prateek Gupta
Martin Weiss
Nasim Rahaman
Hannah Alsdurf
Nanor Minoyan
Soren Harnois-Leblanc
Joanna Merckx
andrew williams
Victor Schmidt
Pierre-Luc St-Charles
Akshay Patel
Yang Zhang
Bernhard Schölkopf