Many-Shot In-Context Learning
Avi Singh
Lei M Zhang
Bernd Bohnet
Stephanie C.Y. Chan
Ankesh Anand
Zaheer Abbas
Azade Nova
John D Co-Reyes
Eric Chu
Feryal Behbahani
Aleksandra Faust
Large language models (LLMs) excel at few-shot in-context learning (ICL) -- learning from a few examples provided in context at inference, w… (see more)ithout any weight updates. Newly expanded context windows allow us to investigate ICL with hundreds or thousands of examples -- the many-shot regime. Going from few-shot to many-shot, we observe significant performance gains across a wide variety of generative and discriminative tasks. While promising, many-shot ICL can be bottlenecked by the available amount of human-generated examples. To mitigate this limitation, we explore two new settings: Reinforced and Unsupervised ICL. Reinforced ICL uses model-generated chain-of-thought rationales in place of human examples. Unsupervised ICL removes rationales from the prompt altogether, and prompts the model only with domain-specific questions. We find that both Reinforced and Unsupervised ICL can be quite effective in the many-shot regime, particularly on complex reasoning tasks. Finally, we demonstrate that, unlike few-shot learning, many-shot learning is effective at overriding pretraining biases, can learn high-dimensional functions with numerical inputs, and performs comparably to fine-tuning. We also find that inference cost increases linearly in the many-shot regime, and frontier LLMs benefit from many-shot ICL to varying degrees. Our analysis also reveals the limitations of next-token prediction loss as an indicator of downstream ICL performance.
Many-Shot In-Context Learning
Avi Singh
Lei M Zhang
Bernd Bohnet
Stephanie C.Y. Chan
Ankesh Anand
Zaheer Abbas
Azade Nova
John D Co-Reyes
Eric Chu
Feryal Behbahani
Aleksandra Faust
Large language models (LLMs) excel at few-shot in-context learning (ICL) -- learning from a few examples provided in context at inference, w… (see more)ithout any weight updates. Newly expanded context windows allow us to investigate ICL with hundreds or thousands of examples -- the many-shot regime. Going from few-shot to many-shot, we observe significant performance gains across a wide variety of generative and discriminative tasks. While promising, many-shot ICL can be bottlenecked by the available amount of human-generated examples. To mitigate this limitation, we explore two new settings: Reinforced and Unsupervised ICL. Reinforced ICL uses model-generated chain-of-thought rationales in place of human examples. Unsupervised ICL removes rationales from the prompt altogether, and prompts the model only with domain-specific questions. We find that both Reinforced and Unsupervised ICL can be quite effective in the many-shot regime, particularly on complex reasoning tasks. Finally, we demonstrate that, unlike few-shot learning, many-shot learning is effective at overriding pretraining biases, can learn high-dimensional functions with numerical inputs, and performs comparably to fine-tuning. We also find that inference cost increases linearly in the many-shot regime, and frontier LLMs benefit from many-shot ICL to varying degrees. Our analysis also reveals the limitations of next-token prediction loss as an indicator of downstream ICL performance.
On the Scalability of GNNs for Molecular Graphs
Maciej Sypetkowski
Frederik Wenkel
Farimah Poursafaei
Nia Dickson
Karush Suri
Philip Fradkin
Scaling deep learning models has been at the heart of recent revolutions in language modelling and image generation. Practitioners have obse… (see more)rved a strong relationship between model size, dataset size, and performance. However, structure-based architectures such as Graph Neural Networks (GNNs) are yet to show the benefits of scale mainly due to the lower efficiency of sparse operations, large data requirements, and lack of clarity about the effectiveness of various architectures. We address this drawback of GNNs by studying their scaling behavior. Specifically, we analyze message-passing networks, graph Transformers, and hybrid architectures on the largest public collection of 2D molecular graphs. For the first time, we observe that GNNs benefit tremendously from the increasing scale of depth, width, number of molecules, number of labels, and the diversity in the pretraining datasets. We further demonstrate strong finetuning scaling behavior on 38 highly competitive downstream tasks, outclassing previous large models. This gives rise to MolGPS, a new graph foundation model that allows to navigate the chemical space, outperforming the previous state-of-the-arts on 26 out the 38 downstream tasks. We hope that our work paves the way for an era where foundational GNNs drive pharmaceutical drug discovery.
Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology
Oren Kraus
Kian Kenyon-Dean
Saber Saberian
Maryam Fallah
Peter McLean
Jess Leung
Vasudev Sharma
Ayla Khan
Jia Balakrishnan
Safiye Celik
Maciej Sypetkowski
Chi Vicky Cheng
Kristen Morse
Maureen Makes
Ben Mabey
Berton Earnshaw
Featurizing microscopy images for use in biological research remains a significant challenge, especially for large-scale experiments spannin… (see more)g millions of images. This work explores the scaling properties of weakly supervised classifiers and self-supervised masked autoencoders (MAEs) when training with increasingly larger model backbones and microscopy datasets. Our results show that ViT-based MAEs outperform weakly supervised classifiers on a variety of tasks, achieving as much as a 11.5% relative improvement when recalling known biological relationships curated from public databases. Additionally, we develop a new channel-agnostic MAE architecture (CA-MAE) that allows for inputting images of different numbers and orders of channels at inference time. We demonstrate that CA-MAEs effectively generalize by inferring and evaluating on a microscopy image dataset (JUMP-CP) generated under different experimental conditions with a different channel structure than our pretraining data (RPI-93M). Our findings motivate continued research into scaling self-supervised learning on microscopy data in order to create powerful foundation models of cellular biology that have the potential to catalyze advancements in drug discovery and beyond. Relevant code and select models released with this work can be found at: https://github.com/recursionpharma/maes_microscopy.
Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology
Oren Kraus
Kian Kenyon-Dean
Saber Saberian
Maryam Fallah
Peter McLean
Jess Leung
Vasudev Sharma
Ayla Khan
Jia Balakrishnan
Safiye Celik
Maciej Sypetkowski
Chi Vicky Cheng
Kristen Morse
Maureen Makes
Ben Mabey
Berton Earnshaw
Featurizing microscopy images for use in biological research remains a significant challenge, especially for large-scale experiments spannin… (see more)g millions of images. This work explores the scaling properties of weakly supervised classifiers and self-supervised masked autoencoders (MAEs) when training with increasingly larger model backbones and microscopy datasets. Our results show that ViT-based MAEs outperform weakly supervised classifiers on a variety of tasks, achieving as much as a 11.5% relative improvement when recalling known biological relationships curated from public databases. Additionally, we develop a new channel-agnostic MAE architecture (CA-MAE) that allows for inputting images of different numbers and orders of channels at inference time. We demonstrate that CA-MAEs effectively generalize by inferring and evaluating on a microscopy image dataset (JUMP-CP) generated under different experimental conditions with a different channel structure than our pretraining data (RPI-93M). Our findings motivate continued research into scaling self-supervised learning on microscopy data in order to create powerful foundation models of cellular biology that have the potential to catalyze advancements in drug discovery and beyond. Relevant code and select models released with this work can be found at: https://github.com/recursionpharma/maes_microscopy.
Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology
Oren Kraus
Kian Kenyon-Dean
Saber Saberian
Maryam Fallah
Peter McLean
Jess Leung
Vasudev Sharma
Ayla Khan
Jia Balakrishnan
Safiye Celik
Maciej Sypetkowski
Chi Vicky Cheng
Kristen Morse
Maureen Makes
Ben Mabey
Berton Earnshaw
Featurizing microscopy images for use in biological research remains a significant challenge, especially for large-scale experiments spannin… (see more)g millions of images. This work explores the scaling properties of weakly supervised classifiers and self-supervised masked autoencoders (MAEs) when training with increasingly larger model backbones and microscopy datasets. Our results show that ViT-based MAEs outperform weakly supervised classifiers on a variety of tasks, achieving as much as a 11.5% relative improvement when recalling known biological relationships curated from public databases. Additionally, we develop a new channel-agnostic MAE architecture (CA-MAE) that allows for inputting images of different numbers and orders of channels at inference time. We demonstrate that CA-MAEs effectively generalize by inferring and evaluating on a microscopy image dataset (JUMP-CP) generated under different experimental conditions with a different channel structure than our pretraining data (RPI-93M). Our findings motivate continued research into scaling self-supervised learning on microscopy data in order to create powerful foundation models of cellular biology that have the potential to catalyze advancements in drug discovery and beyond. Relevant code and select models released with this work can be found at: https://github.com/recursionpharma/maes_microscopy.
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (see 18 more)
Heidi Zhang
Ruiqi Zhong
Sean 'o H'eigeartaigh
Gabriel Recchia
Giulio Corsi
Alan Chan
Markus Anderljung
Lilian Edwards
Danqi Chen
Samuel Albanie
Jakob Nicolaus Foerster
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (see more)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (see 18 more)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Alan Chan
Markus Anderljung
Lilian Edwards
Danqi Chen
Samuel Albanie
Jakob Nicolaus Foerster
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (see more)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (see 18 more)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Alan Chan
Markus Anderljung
Lilian Edwards
Danqi Chen
Samuel Albanie
Jakob Nicolaus Foerster
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (see more)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (see 18 more)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Alan Chan
Markus Anderljung
Lilian Edwards
Danqi Chen
Samuel Albanie
Jakob Nicolaus Foerster
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (see more)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
Usman Anwar
Abulhair Saparov
Javier Rando
Daniel Paleka
Miles Turpin
Peter Hase
Ekdeep Singh Lubana
Erik Jenner
Stephen Casper
Oliver Sourbut
Benjamin L. Edelman
Zhaowei Zhang
Mario Günther
Anton Korinek
Jose Hernandez-Orallo
Lewis Hammond
Eric J Bigelow
Alexander Pan
Lauro Langosco
Tomasz Korbak … (see 18 more)
Heidi Chenyu Zhang
Ruiqi Zhong
Sean O hEigeartaigh
Gabriel Recchia
Giulio Corsi
Alan Chan
Markus Anderljung
Lilian Edwards
Danqi Chen
Samuel Albanie
Jakob Nicolaus Foerster
Florian Tramèr
He He
Atoosa Kasirzadeh
Yejin Choi
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are o… (see more)rganized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose
Government Interventions to Avert Future Catastrophic AI Risks