An Introduction to Vision-Language Modeling
Florian Bordes
Richard Yuanzhe Pang
Anurag Ajay
Alexander C. Li
Adrien Bardes
Suzanne Petryk
Oscar Mañas
Zhiqiu Lin
Anas Mahmoud
Bargav Jayaraman
Mark Ibrahim
Melissa Hall
Yunyang Xiong
Jonathan Lebensold
Candace Ross
Srihari Jayakumar
Chuan Guo
Diane Bouchacourt
Haider Al-Tahan
Karthik Padthe … (see 21 more)
Vasu Sharma
Huijuan Xu 0001
Xiaoqing Ellen Tan
Megan Richards
Samuel Lavoie
Pietro Astolfi
Reyhane Askari Hemmat
Jun Chen
Kushal Tirumala
Rim Assouel
Mazda Moayeri
Arjang Talattof
Kamalika Chaudhuri
Zechun Liu
Xilun Chen
Quentin Garrido
Karen Ullrich
Kate Saenko
Asli Celikyilmaz
Vikas Chandra
Following the recent popularity of Large Language Models (LLMs), several attempts have been made to extend them to the visual domain. From h… (see more)aving a visual assistant that could guide us through unfamiliar environments to generative models that produce images using only a high-level text description, the vision-language model (VLM) applications will significantly impact our relationship with technology. However, there are many challenges that need to be addressed to improve the reliability of those models. While language is discrete, vision evolves in a much higher dimensional space in which concepts cannot always be easily discretized. To better understand the mechanics behind mapping vision to language, we present this introduction to VLMs which we hope will help anyone who would like to enter the field. First, we introduce what VLMs are, how they work, and how to train them. Then, we present and discuss approaches to evaluate VLMs. Although this work primarily focuses on mapping images to language, we also discuss extending VLMs to videos.
An Introduction to Vision-Language Modeling
Florian Bordes
Richard Yuanzhe Pang
Anurag Ajay
Alexander C. Li
Adrien Bardes
Suzanne Petryk
Oscar Mañas
Zhiqiu Lin
Anas Mahmoud
Bargav Jayaraman
Mark Ibrahim
Melissa Hall
Yunyang Xiong
Jonathan Lebensold
Candace Ross
Srihari Jayakumar
Chuan Guo
Diane Bouchacourt
Haider Al-Tahan
Karthik Padthe … (see 21 more)
Vasu Sharma
Huijuan Xu 0001
Xiaoqing Ellen Tan
Megan Richards
Samuel Lavoie
Pietro Astolfi
Reyhane Askari Hemmat
Jun Chen
Kushal Tirumala
Rim Assouel
Mazda Moayeri
Arjang Talattof
Kamalika Chaudhuri
Zechun Liu
Xilun Chen
Quentin Garrido
Karen Ullrich
Kate Saenko
Asli Celikyilmaz
Vikas Chandra
An Introduction to Vision-Language Modeling
Florian Bordes
Richard Yuanzhe Pang
Anurag Ajay
Alexander C. Li
Adrien Bardes
Suzanne Petryk
Oscar Mañas
Zhiqiu Lin
Anas Mahmoud
Bargav Jayaraman
Mark Ibrahim
Melissa Hall
Yunyang Xiong
Jonathan Lebensold
Candace Ross
Srihari Jayakumar
Chuan Guo
Diane Bouchacourt
Haider Al-Tahan
Karthik Padthe … (see 21 more)
Vasu Sharma
Huijuan Xu 0001
Xiaoqing Ellen Tan
Megan Richards
Samuel Lavoie
Pietro Astolfi
Reyhane Askari Hemmat
Jun Chen
Kushal Tirumala
Rim Assouel
Mazda Moayeri
Arjang Talattof
Kamalika Chaudhuri
Zechun Liu
Xilun Chen
Quentin Garrido
Karen Ullrich
Kate Saenko
Asli Celikyilmaz
Vikas Chandra
Following the recent popularity of Large Language Models (LLMs), several attempts have been made to extend them to the visual domain. From h… (see more)aving a visual assistant that could guide us through unfamiliar environments to generative models that produce images using only a high-level text description, the vision-language model (VLM) applications will significantly impact our relationship with technology. However, there are many challenges that need to be addressed to improve the reliability of those models. While language is discrete, vision evolves in a much higher dimensional space in which concepts cannot always be easily discretized. To better understand the mechanics behind mapping vision to language, we present this introduction to VLMs which we hope will help anyone who would like to enter the field. First, we introduce what VLMs are, how they work, and how to train them. Then, we present and discuss approaches to evaluate VLMs. Although this work primarily focuses on mapping images to language, we also discuss extending VLMs to videos.
An Introduction to Vision-Language Modeling
Florian Bordes
Richard Yuanzhe Pang
Anurag Ajay
Alexander C. Li
Adrien Bardes
Suzanne Petryk
Oscar Mañas
Zhiqiu Lin
Anas Mahmoud
Bargav Jayaraman
Mark Ibrahim
Melissa Hall
Yunyang Xiong
Jonathan Lebensold
Candace Ross
Srihari Jayakumar
Chuan Guo
Diane Bouchacourt
Haider Al-Tahan
Karthik Padthe … (see 21 more)
Vasu Sharma
Huijuan Xu 0001
Xiaoqing Ellen Tan
Megan Richards
Samuel Lavoie
Pietro Astolfi
Reyhane Askari Hemmat
Jun Chen
Kushal Tirumala
Rim Assouel
Mazda Moayeri
Arjang Talattof
Kamalika Chaudhuri
Zechun Liu
Xilun Chen
Quentin Garrido
Karen Ullrich
Kate Saenko
Asli Celikyilmaz
Vikas Chandra
Following the recent popularity of Large Language Models (LLMs), several attempts have been made to extend them to the visual domain. From h… (see more)aving a visual assistant that could guide us through unfamiliar environments to generative models that produce images using only a high-level text description, the vision-language model (VLM) applications will significantly impact our relationship with technology. However, there are many challenges that need to be addressed to improve the reliability of those models. While language is discrete, vision evolves in a much higher dimensional space in which concepts cannot always be easily discretized. To better understand the mechanics behind mapping vision to language, we present this introduction to VLMs which we hope will help anyone who would like to enter the field. First, we introduce what VLMs are, how they work, and how to train them. Then, we present and discuss approaches to evaluate VLMs. Although this work primarily focuses on mapping images to language, we also discuss extending VLMs to videos.
An Introduction to Vision-Language Modeling
Florian Bordes
Richard Yuanzhe Pang
Anurag Ajay
Alexander C. Li
Adrien Bardes
Suzanne Petryk
Oscar Mañas
Zhiqiu Lin
Anas Mahmoud
Bargav Jayaraman
Mark Ibrahim
Melissa Hall
Yunyang Xiong
Jonathan Lebensold
Candace Ross
Srihari Jayakumar
Chuan Guo
Diane Bouchacourt
Haider Al-Tahan
Karthik Padthe … (see 21 more)
Vasu Sharma
Huijuan Xu 0001
Xiaoqing Ellen Tan
Megan Richards
Samuel Lavoie
Pietro Astolfi
Reyhane Askari Hemmat
Jun Chen
Kushal Tirumala
Rim Assouel
Mazda Moayeri
Arjang Talattof
Kamalika Chaudhuri
Zechun Liu
Xilun Chen
Quentin Garrido
Karen Ullrich
Kate Saenko
Asli Celikyilmaz
Vikas Chandra
Following the recent popularity of Large Language Models (LLMs), several attempts have been made to extend them to the visual domain. From h… (see more)aving a visual assistant that could guide us through unfamiliar environments to generative models that produce images using only a high-level text description, the vision-language model (VLM) applications will significantly impact our relationship with technology. However, there are many challenges that need to be addressed to improve the reliability of those models. While language is discrete, vision evolves in a much higher dimensional space in which concepts cannot always be easily discretized. To better understand the mechanics behind mapping vision to language, we present this introduction to VLMs which we hope will help anyone who would like to enter the field. First, we introduce what VLMs are, how they work, and how to train them. Then, we present and discuss approaches to evaluate VLMs. Although this work primarily focuses on mapping images to language, we also discuss extending VLMs to videos.
Neuro-GPT: Towards A Foundation Model for EEG
Wenhui Cui
Woojae Jeong
Philipp Thölke
Takfarinas Medani
Anand A. Joshi
Richard M. Leahy
To handle the scarcity and heterogeneity of electroencephalography (EEG) data for Brain-Computer Interface (BCI) tasks, and to harness the p… (see more)ower of large publicly available data sets, we propose Neuro-GPT, a foundation model consisting of an EEG encoder and a GPT model. The foundation model is pre-trained on a large-scale data set using a self-supervised task that learns how to reconstruct masked EEG segments. We then fine-tune the model on a Motor Imagery Classification task to validate its performance in a low-data regime (9 subjects). Our experiments demonstrate that applying a foundation model can significantly improve classification performance compared to a model trained from scratch, which provides evidence for the generalizability of the foundation model and its ability to address challenges of data scarcity and heterogeneity in EEG. The code is publicly available at github.com/wenhui0206/NeuroGPT.
Subject-Based Domain Adaptation for Facial Expression Recognition
Muhammad Osama Zeeshan
Muhammad Haseeb Aslam
Soufiane Belharbi
Alessandro Lameiras Koerich
Simon Bacon
Eric Granger
Adapting a deep learning model to a specific target individual is a challenging facial expression recognition (FER) task that may be achieve… (see more)d using unsupervised domain adaptation (UDA) methods. Although several UDA methods have been proposed to adapt deep FER models across source and target data sets, multiple subject-specific source domains are needed to accurately represent the intra-and inter-person variability in subject-based adaption. This paper considers the setting where domains correspond to individuals, not entire datasets. Unlike UDA, multi-source domain adaptation (MSDA) methods can leverage multiple source datasets to improve the accuracy and robustness of the target model. However, previous methods for MSDA adapt image classification models across datasets and do not scale well to a more significant number of source domains. This paper introduces a new MSDA method for subject-based domain adaptation in FER. It efficiently leverages information from multiple source subjects (labeled source domain data) to adapt a deep FER model to a single target individual (unlabeled target domain data). During adaptation, our subject-based MSDA first computes a between-source discrepancy loss to mitigate the domain shift among data from several source subjects. Then, a new strategy is employed to generate augmented confident pseudo-labels for the target subject, allowing a reduction in the domain shift between source and target subjects. Experiments1 performed on the challenging BioVid heat and pain dataset with 87 subjects and the UNBC-McMaster shoulder pain dataset with 25 subjects show that our subject-based MSDA can outperform state-of-the-art methods yet scale well to multiple subject-based source domains.
Reproducibility Study on Adversarial Attacks Against Robust Transformer Trackers
Fatemeh Nourilenjan Nokabadi
Jean-Francois Lalonde
Stimulus information guides the emergence of behavior-related signals in primary somatosensory cortex during learning.
Mariangela Panniello
Colleen J Gillon
Roberto Maffulli
Marco Celotto
Stefano Panzeri
Michael M Kohl
Towards a Generic Representation of Combinatorial Problems for Learning-Based Approaches
Léo Boisvert
Hélène Verhaeghe
Efficient Adversarial Training in LLMs with Continuous Attacks
Sophie Xhonneux
Stephan Günnemann
Leo Schwinn
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial tra… (see more)ining has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on five models from different families (Gemma, Phi3, Mistral, Zephyr, Llama2) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.
Efficient Adversarial Training in LLMs with Continuous Attacks
Sophie Xhonneux
Stephan Günnemann
Leo Schwinn
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial tra… (see more)ining has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on four models from different families (Gemma, Phi3, Mistral, Zephyr) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.