GPAI Report & Policy Guide: Towards Substantive Equality in AI
Join us at Mila on November 26 for the launch of the report and policy guide that outlines actionable recommendations for building inclusive AI ecosystems.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Using Multiple Vector Channels Improves E(n)-Equivariant Graph Neural Networks
Text-to-image generation models have grown in popularity due to their ability to produce high-quality images from a text prompt. One use for… (see more) this technology is to enable the creation of more accessible art creation software. In this paper, we document the development of an alternative user interface that reduces the typing effort needed to enter image prompts by providing suggestions from a large language model, developed through iterative design and testing within the project team. The results of this testing demonstrate how generative text models can support the accessibility of text-to-image models, enabling users with a range of abilities to create visual art.
The growing popularity of language models has sparked interest in conversational recommender systems (CRS) within both industry and research… (see more) circles. However, concerns regarding biases in these systems have emerged. While individual components of CRS have been subject to bias studies, a literature gap remains in understanding specific biases unique to CRS and how these biases may be amplified or reduced when integrated into complex CRS models. In this paper, we provide a concise review of biases in CRS by surveying recent literature. We examine the presence of biases throughout the system's pipeline and consider the challenges that arise from combining multiple models. Our study investigates biases in classic recommender systems and their relevance to CRS. Moreover, we address specific biases in CRS, considering variations with and without natural language understanding capabilities, along with biases related to dialogue systems and language models. Through our findings, we highlight the necessity of adopting a holistic perspective when dealing with biases in complex CRS models.
Polar decoders such as successive-cancellation and successive-cancellation list decoders are limited by their sequential nature, which leads… (see more) to a linear increase in latency with the codeword length. Heuristic based decoders such as quantum annealing have been proposed to overcome this limitation. However, these decoders have shown poor performance when decoding polar codes with more than eight bits. In this paper, we developed new meta-heuristic based polar decoder, called xSA, which uses a new receiver constraint modeled by the binary cross-entropy function. We also propose a method to determine the weights used in a quadratic unconstrained binary optimization (QUBO) function. The polar code is assumed to have been sent across an AWGN channel and we conducted our experiments and simulations using PyQUBO and dwave-neal. Our results show that xSA is able to decode codes of length 16 and 32 with a near-ML FER performance, presenting itself as a promising alternative to traditional polar decoders for real world applications and next generation cellular communications.
2023-09-04
International Symposium on Turbo Codes and Iterative Information Processing (published)
Early detection of nonalcoholic fatty liver disease (NAFLD) is crucial to avoid further complications. Ultrasound is often used for screenin… (see more)g and monitoring of hepatic steatosis, however it is limited by the subjective interpretation of images. Computer assisted diagnosis could aid radiologists to achieve objective grading, and artificial intelligence approaches have been tested across various medical applications. In this study, we evaluated the performance of a two-stage hepatic steatosis detection deep learning framework, with a first step of liver segmentation and a subsequent step of hepatic steatosis classification. We evaluated the models on internal and external datasets, aiming to understand the generalizability of the framework. In the external dataset, our segmentation model achieved a Dice score of 0.92 (95% CI: 0.78, 1.00), and our classification model achieved an area under the receiver operating characteristic curve of 0.84 (95% CI: 0.79, 0.89). Our findings highlight the potential benefits of applying artificial intelligence models in NAFLD assessment.
124 Development of a Novel Dosimetry Software for Patient-Specific Intravascular Brachytherapy Treatment Planning on Optical Coherence Tomography Images