Self-Refining Training for Amortized Density Functional Theory
Majdi Hassan
Cristian Gabellini
Hatem Helal
Density Functional Theory (DFT) allows for predicting all the chemical and physical properties of molecular systems from first principles by… (see more) finding an approximate solution to the many-body Schrödinger equation. However, the cost of these predictions becomes infeasible when increasing the scale of the energy evaluations, e.g., when calculating the ground-state energy for simulating molecular dynamics. Recent works have demonstrated that, for substantially large datasets of molecular conformations, Deep Learning-based models can predict the outputs of the classical DFT solvers by amortizing the corresponding optimization problems. In this paper, we propose a novel method that reduces the dependency of amortized DFT solvers on large pre-collected datasets by introducing a self-refining training strategy. Namely, we propose an efficient method that simultaneously trains a deep-learning model to predict the DFT outputs and samples molecular conformations that are used as training data for the model. We derive our method as a minimization of the variational upper bound on the KL-divergence measuring the discrepancy between the generated samples and the target Boltzmann distribution defined by the ground state energy. To demonstrate the utility of the proposed scheme, we perform an extensive empirical study comparing it with the models trained on the pre-collected datasets. Finally, we open-source our implementation of the proposed algorithm, optimized with asynchronous training and sampling stages, which enables simultaneous sampling and training. Code is available at https://github.com/majhas/self-refining-dft.
Sparse-Reg: Improving Sample Complexity in Offline Reinforcement Learning using Sparsity
Samin Yeasar Arnob
Scott Fujimoto
In this paper, we investigate the use of small datasets in the context of offline reinforcement learning (RL). While many common offline RL … (see more)benchmarks employ datasets with over a million data points, many offline RL applications rely on considerably smaller datasets. We show that offline RL algorithms can overfit on small datasets, resulting in poor performance. To address this challenge, we introduce"Sparse-Reg": a regularization technique based on sparsity to mitigate overfitting in offline reinforcement learning, enabling effective learning in limited data settings and outperforming state-of-the-art baselines in continuous control.
SSA-COMET: Do LLMs Outperform Learned Metrics in Evaluating MT for Under-Resourced African Languages?
Senyu Li
Jiayi Wang
Felermino Dario Mario Ali
Colin Cherry
Daniel Deutsch
Eleftheria Briakou
Rui Sousa-Silva
Henrique Lopes Cardoso
Pontus Stenetorp
Evaluating machine translation (MT) quality for under-resourced African languages remains a significant challenge, as existing metrics often… (see more) suffer from limited language coverage and poor performance in low-resource settings. While recent efforts, such as AfriCOMET, have addressed some of the issues, they are still constrained by small evaluation sets, a lack of publicly available training data tailored to African languages, and inconsistent performance in extremely low-resource scenarios. In this work, we introduce SSA-MTE, a large-scale human-annotated MT evaluation (MTE) dataset covering 13 African language pairs from the News domain, with over 63,000 sentence-level annotations from a diverse set of MT systems. Based on this data, we develop SSA-COMET and SSA-COMET-QE, improved reference-based and reference-free evaluation metrics. We also benchmark prompting-based approaches using state-of-the-art LLMs like GPT-4o and Claude. Our experimental results show that SSA-COMET models significantly outperform AfriCOMET and are competitive with the strongest LLM (Gemini 2.5 Pro) evaluated in our study, particularly on low-resource languages such as Twi, Luo, and Yoruba. All resources are released under open licenses to support future research.
Stable Gradients for Stable Learning at Scale in Deep Reinforcement Learning
Roger Creus Castanyer
Johan Samir Obando Ceron
Lu Liu
Scaling deep reinforcement learning networks is challenging and often results in degraded performance, yet the root causes of this failure m… (see more)ode remain poorly understood. Several recent works have proposed mechanisms to address this, but they are often complex and fail to highlight the causes underlying this difficulty. In this work, we conduct a series of empirical analyses which suggest that the combination of non-stationarity with gradient pathologies, due to suboptimal architectural choices, underlie the challenges of scale. We propose a series of direct interventions that stabilize gradient flow, enabling robust performance across a range of network depths and widths. Our interventions are simple to implement and compatible with well-established algorithms, and result in an effective mechanism that enables strong performance even at large scales. We validate our findings on a variety of agents and suites of environments.
STAMP: Differentiable Task and Motion Planning via Stein Variational Gradient Descent
Yewon Lee
Philip Huang
Yizhou Huang
Krishna Murthy
Andrew Zou Li
Fabian Damken
Eric Heiden
Kevin A. Smith
Fabio Ramos
Florian Shkurti
Carnegie-mellon University
M. I. O. Technology
Technische Universitat Darmstadt
Nvidia
M. University
University of Sydney
Planning for many manipulation tasks, such as using tools or assembling parts, often requires both symbolic and geometric reasoning. Task an… (see more)d Motion Planning (TAMP) algorithms typically solve these problems by conducting a tree search over high-level task sequences while checking for kinematic and dynamic feasibility. While performant, most existing algorithms are highly inefficient as their time complexity grows exponentially with the number of possible actions and objects. Additionally, they only find a single solution to problems in which many feasible plans may exist. To address these limitations, we propose a novel algorithm called Stein Task and Motion Planning (STAMP) that leverages parallelization and differentiable simulation to efficiently search for multiple diverse plans. STAMP relaxes discrete-and-continuous TAMP problems into continuous optimization problems that can be solved using variational inference. Our algorithm builds upon Stein Variational Gradient Descent, a gradient-based variational inference algorithm, and parallelized differentiable physics simulators on the GPU to efficiently obtain gradients for inference. Further, we employ imitation learning to introduce action abstractions that reduce the inference problem to lower dimensions. We demonstrate our method on two TAMP problems and empirically show that STAMP is able to: 1) produce multiple diverse plans in parallel; and 2) search for plans more efficiently compared to existing TAMP baselines.
State Entropy Regularization for Robust Reinforcement Learning
Yonatan Ashlag
Uri Koren
Mirco Mutti
Esther Derman
Shie Mannor
State entropy regularization has empirically shown better exploration and sample complexity in reinforcement learning (RL). However, its the… (see more)oretical guarantees have not been studied. In this paper, we show that state entropy regularization improves robustness to structured and spatially correlated perturbations. These types of variation are common in transfer learning but often overlooked by standard robust RL methods, which typically focus on small, uncorrelated changes. We provide a comprehensive characterization of these robustness properties, including formal guarantees under reward and transition uncertainty, as well as settings where the method performs poorly. Much of our analysis contrasts state entropy with the widely used policy entropy regularization, highlighting their different benefits. Finally, from a practical standpoint, we illustrate that compared with policy entropy, the robustness advantages of state entropy are more sensitive to the number of rollouts used for policy evaluation.
A systematic review of hyperscanning in clinical encounters
Lena Adel
Lisane Moses
Elisabeth Irvine
Kyle T Greenway
Michael Lifshitz
ToothForge: Automatic Dental Shape Generation using Synchronized Spectral Embeddings
Tibor Kubík
Franccois Guibault
Michal vSpanvel
We introduce ToothForge, a spectral approach for automatically generating novel 3D teeth, effectively addressing the sparsity of dental shap… (see more)e datasets. By operating in the spectral domain, our method enables compact machine learning modeling, allowing the generation of high-resolution tooth meshes in milliseconds. However, generating shape spectra comes with the instability of the decomposed harmonics. To address this, we propose modeling the latent manifold on synchronized frequential embeddings. Spectra of all data samples are aligned to a common basis prior to the training procedure, effectively eliminating biases introduced by the decomposition instability. Furthermore, synchronized modeling removes the limiting factor imposed by previous methods, which require all shapes to share a common fixed connectivity. Using a private dataset of real dental crowns, we observe a greater reconstruction quality of the synthetized shapes, exceeding those of models trained on unaligned embeddings. We also explore additional applications of spectral analysis in digital dentistry, such as shape compression and interpolation. ToothForge facilitates a range of approaches at the intersection of spectral analysis and machine learning, with fewer restrictions on mesh structure. This makes it applicable for shape analysis not only in dentistry, but also in broader medical applications, where guaranteeing consistent connectivity across shapes from various clinics is unrealistic. The code is available at https://github.com/tiborkubik/toothForge.
Training Dynamics Underlying Language Model Scaling Laws: Loss Deceleration and Zero-Sum Learning
Andrei Mircea
Supriyo Chakraborty
Nima Chitsazan
Ekaterina Lobacheva
This work aims to understand how scaling improves language models, specifically in terms of training dynamics. We find that language models … (see more)undergo loss deceleration early in training; an abrupt slowdown in the rate of loss improvement, resulting in piecewise linear behaviour of the loss curve in log-log space. Scaling up the model mitigates this transition by (1) decreasing the loss at which deceleration occurs, and (2) improving the log-log rate of loss improvement after deceleration. We attribute loss deceleration to a type of degenerate training dynamics we term zero-sum learning (ZSL). In ZSL, per-example gradients become systematically opposed, leading to destructive interference in per-example changes in loss. As a result, improving loss on one subset of examples degrades it on another, bottlenecking overall progress. Loss deceleration and ZSL provide new insights into the training dynamics underlying language model scaling laws, and could potentially be targeted directly to improve language models independent of scale. We make our code and artefacts available at: https://github.com/mirandrom/zsl
Unpacking Softmax: How Temperature Drives Representation Collapse, Compression, and Generalization
Wojciech Masarczyk
Mateusz Ostaszewski
Tin Sum Cheng
Tomasz Trzci'nski
Aurélien Lucchi
The softmax function is a fundamental building block of deep neural networks, commonly used to define output distributions in classification… (see more) tasks or attention weights in transformer architectures. Despite its widespread use and proven effectiveness, its influence on learning dynamics and learned representations remains poorly understood, limiting our ability to optimize model behavior. In this paper, we study the pivotal role of the softmax function in shaping the model's representation. We introduce the concept of rank deficit bias - a phenomenon in which softmax-based deep networks find solutions of rank much lower than the number of classes. This bias depends on the softmax function's logits norm, which is implicitly influenced by hyperparameters or directly modified by softmax temperature. Furthermore, we demonstrate how to exploit the softmax dynamics to learn compressed representations or to enhance their performance on out-of-distribution data. We validate our findings across diverse architectures and real-world datasets, highlighting the broad applicability of temperature tuning in improving model performance. Our work provides new insights into the mechanisms of softmax, enabling better control over representation learning in deep neural networks.
Veracity: An Open-Source AI Fact-Checking System
Taylor Lynn Curtis
Maximilian Puelma Touzel
William Garneau
Manon Gruaz
Mike Pinder
Li Wei Wang
Sukanya Krishna
Luda Cohen
Kellin Pelrine
The proliferation of misinformation poses a significant threat to society, exacerbated by the capabilities of generative AI. This demo paper… (see more) introduces Veracity, an open-source AI system designed to empower individuals to combat misinformation through transparent and accessible fact-checking. Veracity leverages the synergy between Large Language Models (LLMs) and web retrieval agents to analyze user-submitted claims and provide grounded veracity assessments with intuitive explanations. Key features include multilingual support, numerical scoring of claim veracity, and an interactive interface inspired by familiar messaging applications. This paper will showcase Veracity's ability to not only detect misinformation but also explain its reasoning, fostering media literacy and promoting a more informed society.
Weak Supervision for Real World Graphs
Pratheeksha Nair