Portrait of Laurence Perreault-Levasseur is unavailable

Laurence Perreault-Levasseur

Associate Academic Member
Assistant Professor, Université de Montréal, Department of Physics
Research Topics
Computer Vision
Deep Learning
Dynamical Systems
Generative Models
Graph Neural Networks
Probabilistic Models

Biography

Laurence Perreault-Levasseur is the Canada Research Chair in Computational Cosmology and Artificial Intelligence. She is an assistant professor at Université de Montréal and an associate academic member of Mila – Quebec Artificial Intelligence Institute. Perreault-Levasseur’s research focuses on the development and application of machine learning methods to cosmology.

She is also a Visiting Scholar at the Flatiron Institute in New York City. Prior to that, she was a research fellow at their Center for Computational Astrophysics, and a KIPAC postdoctoral fellow at Stanford University.

For her PhD degree at the University of Cambridge, she worked on applications of open effective field theory methods to the formalism of inflation. She completed her BSc and MSc degrees at McGill University.

Current Students

PhD - Université de Montréal
PhD - McGill University
Principal supervisor :
Research Intern - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Master's Research - McGill University
Master's Research - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Master's Research - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
Master's Research - Université de Montréal
Postdoctorate - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :
Postdoctorate - McGill University
Co-supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :

Publications

Solving Bayesian inverse problems with diffusion priors and off-policy RL
Luca Scimeca
Siddarth Venkatraman
Moksh J. Jain
Minsu Kim
Marcin Sendera
Mohsin Hasan
Luke Rowe
Alexandre Adam
Sarthak Mittal
Pablo Lemos
Nikolay Malkin
Jarrid Rector-Brooks
This paper presents a practical application of Relative Trajectory Balance (RTB), a recently introduced off-policy reinforcement learning (R… (see more)L) objective that can asymptotically solve Bayesian inverse problems optimally. We extend the original work by using RTB to train conditional diffusion model posteriors from pretrained unconditional priors for challenging linear and non-linear inverse problems in vision, and science. We use the objective alongside techniques such as off-policy backtracking exploration to improve training. Importantly, our results show that existing training-free diffusion posterior methods struggle to perform effective posterior inference in latent space due to inherent biases.
Tackling the Problem of Distributional Shifts: Correcting Misspecified, High-Dimensional Data-Driven Priors for Inverse Problems
Gabriel Missael Barco
Alexandre Adam
Connor Stone
Bayesian inference for inverse problems hinges critically on the choice of priors. In the absence of specific prior information, population-… (see more)level distributions can serve as effective priors for parameters of interest. With the advent of machine learning, the use of data-driven population-level distributions (encoded, e.g., in a trained deep neural network) as priors is emerging as an appealing alternative to simple parametric priors in a variety of inverse problems. However, in many astrophysical applications, it is often difficult or even impossible to acquire independent and identically distributed samples from the underlying data-generating process of interest to train these models. In these cases, corrupted data or a surrogate, e.g. a simulator, is often used to produce training samples, meaning that there is a risk of obtaining misspecified priors. This, in turn, can bias the inferred posteriors in ways that are difficult to quantify, which limits the potential applicability of these models in real-world scenarios. In this work, we propose addressing this issue by iteratively updating the population-level distributions by retraining the model with posterior samples from different sets of observations and showcase the potential of this method on the problem of background image reconstruction in strong gravitational lensing when score-based models are used as data-driven priors. We show that starting from a misspecified prior distribution, the updated distribution becomes progressively closer to the underlying population-level distribution, and the resulting posterior samples exhibit reduced bias after several updates.
A Data-driven Discovery of the Causal Connection between Galaxy and Black Hole Evolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Tristan Deleu
Yu Luo
Changhyun Cho
Pablo Lemos
Xi 熙 Kang 康
Andrea Maccio
PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation
Pablo Lemos
Sammy Nasser Sharief
Nikolay Malkin
Salma Salhi
Connor Stone
Galaxy cluster characterization with machine learning techniques
Maria Sadikov
Julie Hlavacek-larrondo
C. Rhea
Michael McDonald
Michelle Ntampaka
John ZuHone
We present an analysis of the X-ray properties of the galaxy cluster population in the z=0 snapshot of the IllustrisTNG simulations, utilizi… (see more)ng machine learning techniques to perform clustering and regression tasks. We examine five properties of the hot gas (the central cooling time, the central electron density, the central entropy excess, the concentration parameter, and the cuspiness) which are commonly used as classification metrics to identify cool core (CC), weak cool core (WCC) and non cool core (NCC) clusters of galaxies. Using mock Chandra X-ray images as inputs, we first explore an unsupervised clustering scheme to see how the resulting groups correlate with the CC/WCC/NCC classification based on the different criteria. We observe that the groups replicate almost exactly the separation of the galaxy cluster images when classifying them based on the concentration parameter. We then move on to a regression task, utilizing a ResNet model to predict the value of all five properties. The network is able to achieve a mean percentage error of 1.8% for the central cooling time, and a balanced accuracy of 0.83 on the concentration parameter, making them the best-performing metrics. Finally, we use simulation-based inference (SBI) to extract posterior distributions for the network predictions. Our neural network simultaneously predicts all five classification metrics using only mock Chandra X-ray images. This study demonstrates that machine learning is a viable approach for analyzing and classifying the large galaxy cluster datasets that will soon become available through current and upcoming X-ray surveys, such as eROSITA.
Galaxy cluster characterization with machine learning techniques
Maria Sadikov
Julie Hlavacek-larrondo
C. Rhea
Michael McDonald
Michelle Ntampaka
John ZuHone
We present an analysis of the X-ray properties of the galaxy cluster population in the z=0 snapshot of the IllustrisTNG simulations, utilizi… (see more)ng machine learning techniques to perform clustering and regression tasks. We examine five properties of the hot gas (the central cooling time, the central electron density, the central entropy excess, the concentration parameter, and the cuspiness) which are commonly used as classification metrics to identify cool core (CC), weak cool core (WCC) and non cool core (NCC) clusters of galaxies. Using mock Chandra X-ray images as inputs, we first explore an unsupervised clustering scheme to see how the resulting groups correlate with the CC/WCC/NCC classification based on the different criteria. We observe that the groups replicate almost exactly the separation of the galaxy cluster images when classifying them based on the concentration parameter. We then move on to a regression task, utilizing a ResNet model to predict the value of all five properties. The network is able to achieve a mean percentage error of 1.8% for the central cooling time, and a balanced accuracy of 0.83 on the concentration parameter, making them the best-performing metrics. Finally, we use simulation-based inference (SBI) to extract posterior distributions for the network predictions. Our neural network simultaneously predicts all five classification metrics using only mock Chandra X-ray images. This study demonstrates that machine learning is a viable approach for analyzing and classifying the large galaxy cluster datasets that will soon become available through current and upcoming X-ray surveys, such as eROSITA.
Galaxy cluster characterization with machine learning techniques
Maria Sadikov
Julie Hlavacek-larrondo
C. Rhea
Michael McDonald
Michelle Ntampaka
John ZuHone
We present an analysis of the X-ray properties of the galaxy cluster population in the z=0 snapshot of the IllustrisTNG simulations, utilizi… (see more)ng machine learning techniques to perform clustering and regression tasks. We examine five properties of the hot gas (the central cooling time, the central electron density, the central entropy excess, the concentration parameter, and the cuspiness) which are commonly used as classification metrics to identify cool core (CC), weak cool core (WCC) and non cool core (NCC) clusters of galaxies. Using mock Chandra X-ray images as inputs, we first explore an unsupervised clustering scheme to see how the resulting groups correlate with the CC/WCC/NCC classification based on the different criteria. We observe that the groups replicate almost exactly the separation of the galaxy cluster images when classifying them based on the concentration parameter. We then move on to a regression task, utilizing a ResNet model to predict the value of all five properties. The network is able to achieve a mean percentage error of 1.8% for the central cooling time, and a balanced accuracy of 0.83 on the concentration parameter, making them the best-performing metrics. Finally, we use simulation-based inference (SBI) to extract posterior distributions for the network predictions. Our neural network simultaneously predicts all five classification metrics using only mock Chandra X-ray images. This study demonstrates that machine learning is a viable approach for analyzing and classifying the large galaxy cluster datasets that will soon become available through current and upcoming X-ray surveys, such as eROSITA.
IRIS: A Bayesian Approach for Image Reconstruction in Radio Interferometry with expressive Score-Based priors
No'e Dia
M. J. Yantovski-Barth
Alexandre Adam
Micah Bowles
Anna M. M. Scaife
Inferring sky surface brightness distributions from noisy interferometric data in a principled statistical framework has been a key challeng… (see more)e in radio astronomy. In this work, we introduce Imaging for Radio Interferometry with Score-based models (IRIS). We use score-based models trained on optical images of galaxies as an expressive prior in combination with a Gaussian likelihood in the uv-space to infer images of protoplanetary disks from visibility data of the DSHARP survey conducted by ALMA. We demonstrate the advantages of this framework compared with traditional radio interferometry imaging algorithms, showing that it produces plausible posterior samples despite the use of a misspecified galaxy prior. Through coverage testing on simulations, we empirically evaluate the accuracy of this approach to generate calibrated posterior samples.
IRIS: A Bayesian Approach for Image Reconstruction in Radio Interferometry with expressive Score-Based priors
No'e Dia
M. J. Yantovski-Barth
Alexandre Adam
Micah Bowles
Anna M. M. Scaife
Inferring sky surface brightness distributions from noisy interferometric data in a principled statistical framework has been a key challeng… (see more)e in radio astronomy. In this work, we introduce Imaging for Radio Interferometry with Score-based models (IRIS). We use score-based models trained on optical images of galaxies as an expressive prior in combination with a Gaussian likelihood in the uv-space to infer images of protoplanetary disks from visibility data of the DSHARP survey conducted by ALMA. We demonstrate the advantages of this framework compared with traditional radio interferometry imaging algorithms, showing that it produces plausible posterior samples despite the use of a misspecified galaxy prior. Through coverage testing on simulations, we empirically evaluate the accuracy of this approach to generate calibrated posterior samples.
Robustness of Neural Ratio and Posterior Estimators to Distributional Shifts for Population-Level Dark Matter Analysis in Strong Gravitational Lensing
Gravitational-Wave Parameter Estimation in non-Gaussian noise using Score-Based Likelihood Characterization
Ronan Legin
Maximiliano Isi
Kaze W. K. Wong
Causal Discovery in Astrophysics: Unraveling Supermassive Black Hole and Galaxy Coevolution
Zehao Jin
Mario Pasquato
Benjamin L. Davis
Tristan Deleu
Yu Luo
Changhyun Cho
Pablo Lemos
Xi 熙 Kang 康
Andrea Maccio
Correlation does not imply causation, but patterns of statistical association between variables can be exploited to infer a causal structure… (see more) (even with purely observational data) with the burgeoning field of causal discovery. As a purely observational science, astrophysics has much to gain by exploiting these new methods. The supermassive black hole (SMBH)–galaxy interaction has long been constrained by observed scaling relations, which is low-scatter correlations between variables such as SMBH mass and the central velocity dispersion of stars in a host galaxy's bulge. This study, using advanced causal discovery techniques and an up-to-date data set, reveals a causal link between galaxy properties and dynamically measured SMBH masses. We apply a score-based Bayesian framework to compute the exact conditional probabilities of every causal structure that could possibly describe our galaxy sample. With the exact posterior distribution, we determine the most likely causal structures and notice a probable causal reversal when separating galaxies by morphology. In elliptical galaxies, bulge properties (built from major mergers) tend to influence SMBH growth, while, in spiral galaxies, SMBHs are seen to affect host galaxy properties, potentially through feedback in gas-rich environments. For spiral galaxies, SMBHs progressively quench star formation, whereas, in elliptical galaxies, quenching is complete, and the causal connection has reversed. Our findings support theoretical models of hierarchical assembly of galaxies and active galactic nuclei feedback regulating galaxy evolution. Our study suggests the potentiality for further exploration of causal links in astrophysical and cosmological scaling relations, as well as any other observational science.