Portrait of Aishwarya Agrawal

Aishwarya Agrawal

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Scientist, Google DeepMind, Montréal
Research Topics
Computer Vision
Deep Learning
Multimodal Learning
Natural Language Processing

Biography

Aishwarya Agrawal is an assistant professor in the Department of Computer Science and Operations Research at Université de Montréal, a Canada CIFAR AI Chair, and a core academic member of Mila – Quebec Artificial Intelligence Institute.

Agrawal also works as a research scientist one day a week at DeepMind. Previously, she held this position full time (August 2019 to December 2020). She completed her PhD in August 2019 at Georgia Tech, where she worked with Dhruv Batra and Devi Parikh.

Her research interests lie at the intersection of the following sub-disciplines of AI: computer vision, deep learning and natural language processing. The focus is developing AI systems that can ‘see’ (i.e., understand the contents of an image: who, what, where, doing what?) and ‘talk’ (i.e., communicate the understanding to humans in free-form natural language).

Aishwarya has received many awards and scholarships: Georgia Tech 2020 Sigma Xi Best PhD Thesis Award, 2020 Georgia Tech College of Computing Dissertation Award, 2019 Google Fellowship (declined due to graduation), 2019–2020 Facebook Fellowship (declined due to graduation) and 2018–2019 NVIDIA Graduate Fellowship. She was one of two runners-up in the 2019 AAAI/ACM SIGAI Dissertation Award, and was selected as a 2018 Rising Star in EECS.

She holds a bachelor's degree in electrical engineering with a minor in computer science and engineering from the Indian Institute of Technology Gandhinagar (2014).

Current Students

Collaborating researcher - University of British Columbia
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal

Publications

REARANK: Reasoning Re-ranking Agent via Reinforcement Learning
Le Zhang
Bo Wang
Xipeng Qiu
We present REARANK, a large language model (LLM)-based listwise reasoning reranking agent. REARANK explicitly reasons before reranking, sign… (see more)ificantly improving both performance and interpretability. Leveraging reinforcement learning and data augmentation, REARANK achieves substantial improvements over baseline models across popular information retrieval benchmarks, notably requiring only 179 annotated samples. Built on top of Qwen2.5-7B, our REARANK-7B demonstrates performance comparable to GPT-4 on both in-domain and out-of-domain benchmarks and even surpasses GPT-4 on reasoning-intensive BRIGHT benchmarks. These results underscore the effectiveness of our approach and highlight how reinforcement learning can enhance LLM reasoning capabilities in reranking.
UI-Vision: A Desktop-centric GUI Benchmark for Visual Perception and Interaction
Shravan Nayak
Xiangru Jian
Kevin Qinghong Lin
Juan A. Rodriguez
Montek Kalsi
Rabiul Awal
M. T. ¨Ozsu
David Vazquez
Perouz Taslakian
Spandana Gella
Sai Rajeswar
Human Annotator
WebMMU: A Benchmark for Multimodal Multilingual Website Understanding and Code Generation
Rabiul Awal
Mahsa Massoud
Zichao Li
Aarash Feizi
Suyuchen Wang
David Vazquez
Juan A. Rodriguez
Perouz Taslakian
Spandana Gella
Sai Rajeswar
Understanding diverse web data and automating web development presents an exciting challenge for agentic AI. While existing benchmarks addre… (see more)ss isolated web-based tasks—such as website-based Visual Question Answering (VQA) and UI-to-code generation—they lack a unified evaluation suite for assessing web agents that interact with and reason about web environments. We introduce WebMMU, a large-scale benchmark for evaluating AI-driven web agents across multilingual website VQA, HTML/CSS/JavaScript code editing, and sketch-to-code generation. WebMMU provides a comprehensive evaluation suite with real-world website data, multi-step reasoning tasks, and functional UI understanding. Benchmarking state-of-the-art multimodal models on WebMMU reveals significant limitations in web-based reasoning, layout understanding, and structured code generation, particularly in preserving UI hierarchy, handling multilingual content, and producing robust, functional code. While most existing models are optimized for English-only settings, WebMMU highlights the challenges of cross-lingual adaptation in real-world web development. These findings expose critical gaps in current models’ ability to understand website structures, execute user instructions, and generate high-quality web code, underscoring the need for more advanced multimodal reasoning in AI-driven web understanding and development.
UI-Vision: A Desktop-centric GUI Benchmark for Visual Perception and Interaction
Shravan Nayak
Xiangru Jian
Kevin Qinghong Lin
Juan A. Rodriguez
Montek Kalsi
Rabiul Awal
M. T. ¨Ozsu
David Vazquez
Perouz Taslakian
Spandana Gella
Sai Rajeswar
Human Annotator
Assessing and Learning Alignment of Unimodal Vision and Language Models
Le Zhang
Qian Yang
How well are unimodal vision and language models aligned? Although prior work have approached answering this question, their assessment meth… (see more)ods do not directly translate to how these models are used in practical vision-language tasks. In this paper, we propose a direct assessment method, inspired by linear probing, to assess vision-language alignment. We identify that the degree of alignment of the SSL vision models depends on their SSL training objective, and we find that the clustering quality of SSL representations has a stronger impact on alignment performance than their linear separability. Next, we introduce Swift Alignment of Image and Language (SAIL), a efficient transfer learning framework that aligns pretrained unimodal vision and language models for downstream vision-language tasks. Since SAIL leverages the strengths of pretrained unimodal models, it requires significantly fewer (6%) paired image-text data for the multimodal alignment compared to models like CLIP which are trained from scratch. SAIL training only requires a single A100 GPU, 5 hours of training and can accommodate a batch size up to 32,768. SAIL achieves 73.4% zero-shot accuracy on ImageNet (vs. CLIP's 72.7%) and excels in zero-shot retrieval, complex reasoning, and semantic segmentation. Additionally, SAIL improves the language-compatibility of vision encoders that in turn enhance the performance of multimodal large language models. The entire codebase and model weights are open-source: https://lezhang7.github.io/sail.github.io/
Assessing and Learning Alignment of Unimodal Vision and Language Models
Le Zhang
Qian Yang
How well are unimodal vision and language models aligned? Although prior work have approached answering this question, their assessment meth… (see more)ods do not directly translate to how these models are used in practical vision-language tasks. In this paper, we propose a direct assessment method, inspired by linear probing, to assess vision-language alignment. We identify that the degree of alignment of the SSL vision models depends on their SSL training objective, and we find that the clustering quality of SSL representations has a stronger impact on alignment performance than their linear separability. Next, we introduce Swift Alignment of Image and Language (SAIL), a efficient transfer learning framework that aligns pretrained unimodal vision and language models for downstream vision-language tasks. Since SAIL leverages the strengths of pretrained unimodal models, it requires significantly fewer (6%) paired image-text data for the multimodal alignment compared to models like CLIP which are trained from scratch. SAIL training only requires a single A100 GPU, 5 hours of training and can accommodate a batch size up to 32,768. SAIL achieves 73.4% zero-shot accuracy on ImageNet (vs. CLIP's 72.7%) and excels in zero-shot retrieval, complex reasoning, and semantic segmentation. Additionally, SAIL improves the language-compatibility of vision encoders that in turn enhance the performance of multimodal large language models. The entire codebase and model weights are open-source: https://lezhang7.github.io/sail.github.io/
Assessing and Learning Alignment of Unimodal Vision and Language Models
Le Zhang
Qian Yang
How well are unimodal vision and language models aligned? Although prior work have approached answering this question, their assessment meth… (see more)ods do not directly translate to how these models are used in practical vision-language tasks. In this paper, we propose a direct assessment method, inspired by linear probing, to assess vision-language alignment. We identify that the degree of alignment of the SSL vision models depends on their SSL training objective, and we find that the clustering quality of SSL representations has a stronger impact on alignment performance than their linear separability. Next, we introduce Swift Alignment of Image and Language (SAIL), a efficient transfer learning framework that aligns pretrained unimodal vision and language models for downstream vision-language tasks. Since SAIL leverages the strengths of pretrained unimodal models, it requires significantly fewer (6%) paired image-text data for the multimodal alignment compared to models like CLIP which are trained from scratch. SAIL training only requires a single A100 GPU, 5 hours of training and can accommodate a batch size up to 32,768. SAIL achieves 73.4% zero-shot accuracy on ImageNet (vs. CLIP's 72.7%) and excels in zero-shot retrieval, complex reasoning, and semantic segmentation. Additionally, SAIL improves the language-compatibility of vision encoders that in turn enhance the performance of multimodal large language models. The entire codebase and model weights are open-source: https://lezhang7.github.io/sail.github.io/
Improving Text-to-Image Consistency via Automatic Prompt Optimization
Oscar Mañas
Pietro Astolfi
Melissa Hall
Candace Ross
Jack Urbanek
Adina Williams
Michal Drozdzal
Controlling Multimodal LLMs via Reward-guided Decoding
Oscar Mañas
Pierluca D'Oro
Koustuv Sinha
Michal Drozdzal
CTRL-O: Language-Controllable Object-Centric Visual Representation Learning
Aniket Rajiv Didolkar
Andrii Zadaianchuk
Rabiul Awal
Maximilian Seitzer
Efstratios Gavves
Object-centric representation learning aims to decompose visual scenes into fixed-size vectors called "slots" or "object files", where each … (see more)slot captures a distinct object. Current state-of-the-art models have shown remarkable success in object discovery, particularly in complex real-world scenes, while also generalizing well to unseen domains. However, these models suffer from a key limitation: they lack controllability. Specifically, current object-centric models learn representations based on their preconceived understanding of objects and parts, without allowing user input to guide or modify which objects are represented. Introducing controllability into object-centric models could unlock a range of useful capabilities, such as enabling models to represent scenes at variable levels of granularity based on user specification. In this work, we propose a novel approach that conditions slot representations through guided decomposition, paired with a novel contrastive learning objective, to enable user-directed control over which objects are represented. Our method achieves such controllability without any mask supervision and successfully binds to user-specified objects in complex real-world scenes.
Enhancing Multi-Agent Multi-Modal Collaboration with Fine-Grained Reward Modeling
Qian Yang
Weixiang Yan
Multi-Modal Large Language Models (MLLMs) have significantly advanced multi-modal reasoning but still struggle with compositional reasoning … (see more)tasks. Multi-agent collaboration provides a promising solution by leveraging the distinct capabilities of different agents. Specifically, a decomposer agent to handle task breakdown and an answerer agent to generate responses. While there have been efforts to adaptively decompose tasks based on the answerer agent's capabilities, such as using in-context learning, these methods often prove insufficient for fully effective decomposition. We address this issue by enhancing collaboration through fine-grained reward modeling, where each generated sub-question is assigned a specialized reward without requiring extra annotation or tuning of a reward model. Our proposed method dynamically optimizes the decomposition process, enabling better alignment between agents. Experimental results on four vision-language tasks demonstrate consistent improvements, with a 5.5\% absolute increase in mean performance over traditional approaches. These findings highlight the efficacy of fine-grained reward modeling for enhancing multi-agent, multi-modal collaboration.
Visual Language Alignment Tuning
Le Zhang
Qian Yang