Join us on November 19 for the third edition of Mila’s science popularization contest, where students will present their complex research in just three minutes before a jury.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Shivam Chandhok
Collaborating researcher - University of British Columbia
Instruction tuning has been central to the success of recent vision-language models (VLMs), but it remains expensive-requiring large-scale d… (see more)atasets, high-quality annotations, and large compute budgets. We propose PRioritized cOncept learninG via Relative Error-driven Sample Selection (PROGRESS), a data- and compute-efficient framework that enables VLMs to dynamically select what to learn next based on their evolving needs during training. At each stage, the model tracks its learning progress across skills and selects the most informative samples-those it has not already mastered and that are not too difficult to learn at the current stage of training. This strategy effectively controls skill acquisition and the order in which skills are learned. Specifically, we sample from skills showing the highest learning progress, prioritizing those with the most rapid improvement. Unlike prior methods, PROGRESS requires no upfront answer annotations, queries answers only on a need basis, avoids reliance on additional supervision from auxiliary VLMs, and does not require compute-heavy gradient computations for data selection. Experiments across multiple instruction-tuning datasets of varying scales demonstrate that PROGRESS consistently outperforms state-of-the-art baselines with much less data and supervision. Additionally, we show strong cross-architecture generalization and transferability to larger models, validating PROGRESS as a scalable solution for efficient learning.