Portrait of Smita Krishnaswamy

Smita Krishnaswamy

Affiliate Member
Associate Professor, Yale University
Université de Montréal
Yale
Research Topics
AI in Health
Brain-computer Interfaces
Cognitive Science
Computational Biology
Computational Neuroscience
Data Geometry
Data Science
Data Sparsity
Deep Learning
Dynamical Systems
Generative Models
Geometric Deep Learning
Graph Neural Networks
Information Theory
Manifold Learning
Molecular Modeling
Representation Learning
Spectral Learning

Biography

Our lab works on developing foundational mathematical machine learning and deep learning methods that incorporate graph-based learning, signal processing, information theory, data geometry and topology, optimal transport and dynamics modeling that are capable of exploratory analysis, scientific inference, interpretation and hypothesis generation big biomedical datasets ranging from single-cell data, to brain imaging, to molecular structural datasets arising from neuroscience, psychology, stem cell biology, cancer biology, healthcare, and biochemistry. Our works have been instrumental in dynamic trajectory learning from static snapshot data, data denoising, visualization, network inference, molecular structure modeling and more.

Publications

Graph Fourier MMD for signals on data graphs
Samuel Leone
Alexander Tong
Guillaume Huguet
While numerous methods have been proposed for computing distances between probability distributions in Euclidean space, relatively little at… (see more)tention has been given to computing such distances for distributions on graphs. However, there has been a marked increase in data that either lies on graph (such as protein interaction networks) or can be modeled as a graph (single cell data), particularly in the biomedical sciences. Thus, it becomes important to find ways to compare signals defined on such graphs. Here, we propose Graph Fourier MMD (GFMMD), a novel a distance between distributions, or non-negative signals on graphs. GFMMD is defined via an optimal witness function that is both smooth on the graph and maximizes difference in expectation between the pair of distributions on the graph. We find an analytical solution to this optimization problem as well as an embedding of distributions that results from this method. We also prove several properties of this method including scale invariance and applicability to disconnected graphs. We showcase it on graph benchmark datasets as well on single cell RNA-sequencing data analysis. In the latter, we use the GFMMD-based gene embeddings to find meaningful gene clusters. We also propose a novel type of score for gene selection called {\em gene localization score} which helps select genes for cellular state space characterization.
GEODESIC SINKHORN FOR FAST AND ACCURATE OPTIMAL TRANSPORT ON MANIFOLDS
Guillaume Huguet
Alexander Tong
María Ramos Zapatero
Christopher J. Tape
Efficient computation of optimal transport distance between distributions is of growing importance in data science. Sinkhorn-based methods a… (see more)re currently the state-of-the-art for such computations, but require O(n2) computations. In addition, Sinkhorn-based methods commonly use an Euclidean ground distance between datapoints. However, with the prevalence of manifold structured scientific data, it is often desirable to consider geodesic ground distance. Here, we tackle both issues by proposing Geodesic Sinkhorn—based on diffusing a heat kernel on a manifold graph. Notably, Geodesic Sinkhorn requires only O(n log n) computation, as we approximate the heat kernel with Chebyshev polynomials based on the sparse graph Laplacian. We apply our method to the computation of barycenters of several distributions of high dimensional single cell data from patient samples undergoing chemotherapy. In particular, we define the barycentric distance as the distance between two such barycenters. Using this definition, we identify an optimal transport distance and path associated with the effect of treatment on cellular data.
A Heat Diffusion Perspective on Geodesic Preserving Dimensionality Reduction
Guillaume Huguet
Alexander Tong
Edward De Brouwer
Yanlei Zhang
Ian Adelstein
Inferring Dynamic Regulatory Interaction Graphs From Time Series Data With Perturbations
Dhananjay Bhaskar
Daniel Sumner Magruder
Edward De Brouwer
Matheo Morales
Aarthi Venkat
Frederik Wenkel
Learning Shared Neural Manifolds from Multi-Subject FMRI Data
Jessie Huang
Je-chun Huang
Erica Lindsey Busch
Tom Wallenstein
Michal Gerasimiuk
Andrew Benz
Nicholas Turk-Browne
Functional magnetic resonance imaging (fMRI) data is collected in millions of noisy, redundant dimensions. To understand how different brain… (see more)s process the same stimulus, we aim to denoise the fMRI signal via a meaningful embedding space that captures the data's intrinsic structure as shared across brains. We assume that stimulus-driven responses share latent features common across subjects that are jointly discoverable. Previous approaches to this problem have relied on linear methods like principal component analysis and shared response modeling. We propose a neural network called MRMD-AE (manifold-regularized multiple- decoder, autoencoder) that learns a common embedding from multi-subject fMRI data while retaining the ability to decode individual responses. Our latent common space represents an extensible manifold (where untrained data can be mapped) and improves classification accuracy of stimulus features of unseen timepoints, as well as cross-subject translation of fMRI signals.
Multiscale PHATE identifies multimodal signatures of COVID-19
Manik Kuchroo
Je-chun Huang
Patrick Wong
Jean-Christophe Grenier
Dennis Shung
Alexander Tong
Carolina Lucas
Jon Klein
Daniel B. Burkhardt
Scott Gigante
Abhinav Godavarthi
Bastian Rieck
Benjamin Israelow
Michael Simonov
Tianyang Mao
Ji Eun Oh
Julio Silva
Takehiro Takahashi
Camila D. Odio
Arnau Casanovas-Massana … (see 10 more)
John Fournier
Shelli Farhadian
Charles S. Dela Cruz
Albert I. Ko
Matthew Hirn
F. Perry Wilson
Akiko Iwasaki
Multiscale PHATE identifies multimodal signatures of COVID-19
Manik Kuchroo
Je-chun Huang
Patrick W. Wong
Jean-Christophe Grenier
Dennis L. Shung
Alexander Tong
C. Lucas
J. Klein
Daniel B. Burkhardt
Scott Gigante
Abhinav Godavarthi
Bastian Rieck
Benjamin Israelow
Michael Simonov
Tianyang Mao
Ji Eun Oh
Julio Silva
Takehiro Takahashi
C. Odio
Arnau Casanovas‐massana … (see 10 more)
John Byrne Fournier
Shelli F. Farhadian
C. D. Dela Cruz
A. Ko
Matthew Hirn
F. Wilson
Akiko Iwasaki
Population Genomics Approaches for Genetic Characterization of SARS-CoV-2 Lineages
Fatima Mostefai
Isabel Gamache
Arnaud N’Guessan
Justin Pelletier
Jessie Huang
Carmen Lia Murall
Ahmad Pesaranghader
Vanda Gaonac'h-Lovejoy
David J. Hamelin
Raphael Poujol
Jean-Christophe Grenier
Martin Smith
Etienne Caron
Morgan Craig
B. Jesse Shapiro
Population Genomics Approaches for Genetic Characterization of SARS-CoV-2 Lineages
Fatima Mostefai
I. Gamache
Arnaud N’Guessan
Justin Pelletier
Jessie Huang
Carmen Lia Murall
Ahmad Pesaranghader
Vanda Gaonac'h-Lovejoy
David J. Hamelin
Raphael Poujol
Jean-Christophe Grenier
Martin W. Smith
Étienne Caron
Morgan Craig
B. Jesse Shapiro
The genome of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19)… (see more), has been sequenced at an unprecedented scale leading to a tremendous amount of viral genome sequencing data. To assist in tracing infection pathways and design preventive strategies, a deep understanding of the viral genetic diversity landscape is needed. We present here a set of genomic surveillance tools from population genetics which can be used to better understand the evolution of this virus in humans. To illustrate the utility of this toolbox, we detail an in depth analysis of the genetic diversity of SARS-CoV-2 in first year of the COVID-19 pandemic. We analyzed 329,854 high-quality consensus sequences published in the GISAID database during the pre-vaccination phase. We demonstrate that, compared to standard phylogenetic approaches, haplotype networks can be computed efficiently on much larger datasets. This approach enables real-time lineage identification, a clear description of the relationship between variants of concern, and efficient detection of recurrent mutations. Furthermore, time series change of Tajima's D by haplotype provides a powerful metric of lineage expansion. Finally, principal component analysis (PCA) highlights key steps in variant emergence and facilitates the visualization of genomic variation in the context of SARS-CoV-2 diversity. The computational framework presented here is simple to implement and insightful for real-time genomic surveillance of SARS-CoV-2 and could be applied to any pathogen that threatens the health of populations of humans and other organisms.
Fixing Bias in Reconstruction-based Anomaly Detection with Lipschitz Discriminators
Alexander Tong
Anomaly detection is of great interest in fields where abnormalities need to be identified and corrected (e.g., medicine and finance). Deep … (see more)learning methods for this task often rely on autoencoder reconstruction error, sometimes in conjunction with other penalties. We show that this approach exhibits intrinsic biases that lead to undesirable results. Reconstruction-based methods can sometimes show low error on simple-to-reconstruct points that are not part of the training data, for example the all black image. Instead, we introduce a new unsupervised Lipschitz anomaly discriminator (LAD) that does not suffer from these biases. Our anomaly discriminator is trained, similar to the discriminator of a GAN, to detect the difference between the training data and corruptions of the training data. We show that this procedure successfully detects unseen anomalies with guarantees on those that have a certain Wasserstein distance from the data or corrupted training set. These additions allow us to show improved performance on MNIST, CIFAR10, and health record data. Further, LAD does not require decoding back to the original data space, which makes anomaly detection possible in domains where it is difficult to define a decoder, such as in irregular graph structured data. Empirically, we show this framework leads to improved performance on image, health record, and graph data.
Data-driven approaches for genetic characterization of SARS-CoV-2 lineages
Fatima Mostefai
Isabel Gamache
Jessie Huang
Arnaud N’Guessan
Justin Pelletier
Ahmad Pesaranghader
David J. Hamelin
Carmen Lia Murall
Raphael Poujol
Jean-Christophe Grenier
Martin Smith
Etienne Caron
Morgan Craig
Jesse Shapiro
The genome of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19)… (see more), has been sequenced at an unprecedented scale, leading to a tremendous amount of viral genome sequencing data. To understand the evolution of this virus in humans, and to assist in tracing infection pathways and designing preventive strategies, we present a set of computational tools that span phylogenomics, population genetics and machine learning approaches. To illustrate the utility of this toolbox, we detail an in depth analysis of the genetic diversity of SARS-CoV-2 in first year of the COVID-19 pandemic, using 329,854 high-quality consensus sequences published in the GISAID database during the pre-vaccination phase. We demonstrate that, compared to standard phylogenetic approaches, haplotype networks can be computed efficiently on much larger datasets, enabling real-time analyses. Furthermore, time series change of Tajima’s D provides a powerful metric of population expansion. Unsupervised learning techniques further highlight key steps in variant detection and facilitate the study of the role of this genomic variation in the context of SARS-CoV-2 infection, with Multiscale PHATE methodology identifying fine-scale structure in the SARS-CoV-2 genetic data that underlies the emergence of key lineages. The computational framework presented here is useful for real-time genomic surveillance of SARS-CoV-2 and could be applied to any pathogen that threatens the health of worldwide populations of humans and other organisms.
Embedding Signals on Knowledge Graphs with Unbalanced Diffusion Earth Mover's Distance
Alexander Tong
Guillaume Huguet
Dennis L. Shung
Amine Natik
Manik Kuchroo
In modern relational machine learning it is common to encounter large graphs that arise via interactions or similarities between observation… (see more)s in many domains. Further