Portrait of Smita Krishnaswamy

Smita Krishnaswamy

Affiliate Member
Associate Professor, Yale University
Université de Montréal
Yale
Research Topics
AI in Health
Brain-computer Interfaces
Cognitive Science
Computational Biology
Computational Neuroscience
Data Geometry
Data Science
Data Sparsity
Deep Learning
Dynamical Systems
Generative Models
Geometric Deep Learning
Graph Neural Networks
Information Theory
Manifold Learning
Molecular Modeling
Representation Learning
Spectral Learning

Biography

Our lab works on developing foundational mathematical machine learning and deep learning methods that incorporate graph-based learning, signal processing, information theory, data geometry and topology, optimal transport and dynamics modeling that are capable of exploratory analysis, scientific inference, interpretation and hypothesis generation big biomedical datasets ranging from single-cell data, to brain imaging, to molecular structural datasets arising from neuroscience, psychology, stem cell biology, cancer biology, healthcare, and biochemistry. Our works have been instrumental in dynamic trajectory learning from static snapshot data, data denoising, visualization, network inference, molecular structure modeling and more.

Publications

Low-dimensional embeddings of high-dimensional data
Cyril de Bodt
Alex Diaz-Papkovich
Michael Bleher
Kerstin Bunte
Corinna Coupette
Sebastian Damrich
Fred A. Hamprecht
EmHoke-'Agnes Horv'at
Dhruv Kohli
John A. Lee 0001
Boudewijn P. F. Lelieveldt
Leland McInnes
Ian T. Nabney
Maximilian Noichl
Pavlin G. Polivcar
Bastian Rieck
Gal Mishne … (see 1 more)
Dmitry Kobak
Large collections of high-dimensional data have become nearly ubiquitous across many academic fields and application domains, ranging from b… (see more)iology to the humanities. Since working directly with high-dimensional data poses challenges, the demand for algorithms that create low-dimensional representations, or embeddings, for data visualization, exploration, and analysis is now greater than ever. In recent years, numerous embedding algorithms have been developed, and their usage has become widespread in research and industry. This surge of interest has resulted in a large and fragmented research field that faces technical challenges alongside fundamental debates, and it has left practitioners without clear guidance on how to effectively employ existing methods. Aiming to increase coherence and facilitate future work, in this review we provide a detailed and critical overview of recent developments, derive a list of best practices for creating and using low-dimensional embeddings, evaluate popular approaches on a variety of datasets, and discuss the remaining challenges and open problems in the field.
STAGED: A Multi-Agent Neural Network for Learning Cellular Interaction Dynamics
João Felipe Rocha
Ke Xu
Xingzhi Sun
Ananya Krishna
Dhananjay Bhaskar
Blanche Mongeon
Morgan Craig
Mark B. Gerstein
The advent of single-cell technology has significantly improved our understanding of cellular states and subpopulations in various tissues u… (see more)nder normal and diseased conditions by employing data-driven approaches such as clustering and trajectory inference. However, these methods consider cells as independent data points of population distributions. With spatial transcriptomics, we can represent cellular organization, along with dynamic cell-cell interactions that lead to changes in cell state. Still, key computational advances are necessary to enable the data-driven learning of such complex interactive cellular dynamics. While agent-based modeling (ABM) provides a powerful framework, traditional approaches rely on handcrafted rules derived from domain knowledge rather than data-driven approaches. To address this, we introduce Spatio Temporal Agent-Based Graph Evolution Dynamics(STAGED) integrating ABM with deep learning to model intercellular communication, and its effect on the intracellular gene regulatory network. Using graph ODE networks (GDEs) with shared weights per cell type, our approach represents genes as vertices and interactions as directed edges, dynamically learning their strengths through a designed attention mechanism. Trained to match continuous trajectories of simulated as well as inferred trajectories from spatial transcriptomics data, the model captures both intercellular and intracellular interactions, enabling a more adaptive and accurate representation of cellular dynamics.
SlepNet: Spectral Subgraph Representation Learning for Neural Dynamics
Siddharth Viswanath
Rahul Singh
Yanlei Zhang
J. Adam Noah
Joy Hirsch
Graph neural networks have been useful in machine learning on graph-structured data, particularly for node classification and some types of … (see more)graph classification tasks. However, they have had limited use in representing patterning of signals over graphs. Patterning of signals over graphs and in subgraphs carries important information in many domains including neuroscience. Neural signals are spatiotemporally patterned, high dimensional and difficult to decode. Graph signal processing and associated GCN models utilize the graph Fourier transform and are unable to efficiently represent spatially or spectrally localized signal patterning on graphs. Wavelet transforms have shown promise here, but offer non-canonical representations and cannot be tightly confined to subgraphs. Here we propose SlepNet, a novel GCN architecture that uses Slepian bases rather than graph Fourier harmonics. In SlepNet, the Slepian harmonics optimally concentrate signal energy on specifically relevant subgraphs that are automatically learned with a mask. Thus, they can produce canonical and highly resolved representations of neural activity, focusing energy of harmonics on areas of the brain which are activated. We evaluated SlepNet across three fMRI datasets, spanning cognitive and visual tasks, and two traffic dynamics datasets, comparing its performance against conventional GNNs and graph signal processing constructs. SlepNet outperforms the baselines in all datasets. Moreover, the extracted representations of signal patterns from SlepNet offers more resolution in distinguishing between similar patterns, and thus represent brain signaling transients as informative trajectories. Here we have shown that these extracted trajectory representations can be used for other downstream untrained tasks. Thus we establish that SlepNet is useful both for prediction and representation learning in spatiotemporal data.
SlepNet: Spectral Subgraph Representation Learning for Neural Dynamics
Siddharth Viswanath
Rahul Singh
Yanlei Zhang
J. Adam Noah
Joy Hirsch
Graph neural networks have been useful in machine learning on graph-structured data, particularly for node classification and some types of … (see more)graph classification tasks. However, they have had limited use in representing patterning of signals over graphs. Patterning of signals over graphs and in subgraphs carries important information in many domains including neuroscience. Neural signals are spatiotemporally patterned, high dimensional and difficult to decode. Graph signal processing and associated GCN models utilize the graph Fourier transform and are unable to efficiently represent spatially or spectrally localized signal patterning on graphs. Wavelet transforms have shown promise here, but offer non-canonical representations and cannot be tightly confined to subgraphs. Here we propose SlepNet, a novel GCN architecture that uses Slepian bases rather than graph Fourier harmonics. In SlepNet, the Slepian harmonics optimally concentrate signal energy on specifically relevant subgraphs that are automatically learned with a mask. Thus, they can produce canonical and highly resolved representations of neural activity, focusing energy of harmonics on areas of the brain which are activated. We evaluated SlepNet across three fMRI datasets, spanning cognitive and visual tasks, and two traffic dynamics datasets, comparing its performance against conventional GNNs and graph signal processing constructs. SlepNet outperforms the baselines in all datasets. Moreover, the extracted representations of signal patterns from SlepNet offers more resolution in distinguishing between similar patterns, and thus represent brain signaling transients as informative trajectories. Here we have shown that these extracted trajectory representations can be used for other downstream untrained tasks. Thus we establish that SlepNet is useful both for prediction and representation learning in spatiotemporal data.
HEIST: A Graph Foundation Model for Spatial Transcriptomics and Proteomics Data
Hiren Madhu
João Felipe Rocha
Tinglin Huang
Siddharth Viswanath
Rex Ying
ImmunoStruct: a multimodal neural network framework for immunogenicity prediction from peptide-MHC sequence, structure, and biochemical properties
Kevin Bijan Givechian
João Felipe Rocha
Edward Yang
Chen Liu
Kerrie Greene
Rex Ying
Etienne Caron
Akiko Iwasaki
Neurospectrum: A Geometric and Topological Deep Learning Framework for Uncovering Spatiotemporal Signatures in Neural Activity
Dhananjay Bhaskar
Yanlei Zhang
Jessica Moore
Feng Gao
Bastian Rieck
Firas Khasawneh
Elizabeth Munch
J. Adam Noah
Helen Pushkarskaya
Christopher Pittenger
Valentina Greco
Neurospectrum: A Geometric and Topological Deep Learning Framework for Uncovering Spatiotemporal Signatures in Neural Activity
Dhananjay Bhaskar
Jessica Moore
Feng Gao
Bastian Rieck
Firas Khasawneh
Elizabeth Munch
Valentina Greco
Neural signals are high-dimensional, noisy, and dynamic, making it challenging to extract interpretable features linked to behavior or disea… (see more)se. We introduce Neurospectrum, a framework that encodes neural activity as latent trajectories shaped by spatial and temporal structure. At each timepoint, signals are represented on a graph capturing spatial relationships, with a learnable attention mechanism highlighting important regions. These are embedded using graph wavelets and passed through a manifold-regularized autoencoder that preserves temporal geometry. The resulting latent trajectory is summarized using a principled set of descriptors - including curvature, path signatures, persistent homology, and recurrent networks -that capture multiscale geometric, topological, and dynamical features. These features drive downstream prediction in a modular, interpretable, and end-to-end trainable framework. We evaluate Neurospectrum on simulated and experimental datasets. It tracks phase synchronization in Kuramoto simulations, reconstructs visual stimuli from calcium imaging, and identifies biomarkers of obsessive-compulsive disorder in fMRI. Across tasks, Neurospectrum uncovers meaningful neural dynamics and outperforms traditional analysis methods.
HELM: Hyperbolic Large Language Models via Mixture-of-Curvature Experts
Neil He
Rishabh Anand
Hiren Madhu
Ali Maatouk
Leandros Tassiulas
Menglin Yang 0001
Rex Ying
ImmunoStruct: a multimodal neural network framework for immunogenicity prediction from peptide-MHC sequence, structure, and biochemical properties
Kevin Bijan Givechian
João Felipe Rocha
Edward Yang
Chen Liu
Kerrie Greene
Rex Ying
Etienne Caron
Akiko Iwasaki
InfoGain Wavelets: Furthering the Design of Diffusion Wavelets for Graph-Structured Data
David R. Johnson
Michael Perlmutter
Latent Representation Learning for Multimodal Brain Activity Translation
Arman Afrasiyabi
Dhananjay Bhaskar
Erica Lindsey Busch
Laurent Caplette
Rahul Singh
Nicholas B Turk-Browne
Neuroscience employs diverse neuroimaging techniques, each offering distinct insights into brain activity, from electrophysiological recordi… (see more)ngs such as EEG, which have high temporal resolution, to hemodynamic modalities such as fMRI, which have increased spatial precision. However, integrating these heterogeneous data sources remains a challenge, which limits a comprehensive understanding of brain function. We present the Spatiotemporal Alignment of Multimodal Brain Activity (SAMBA) framework, which bridges the spatial and temporal resolution gaps across modalities by learning a unified latent space free of modality-specific biases. SAMBA introduces a novel attention-based wavelet decomposition for spectral filtering of electrophysiological recordings, graph attention networks to model functional connectivity between functional brain units, and recurrent layers to capture temporal autocorrelations in brain signal. We show that the training of SAMBA, aside from achieving translation, also learns a rich representation of brain information processing. We showcase this classify external stimuli driving brain activity from the representation learned in hidden layers of SAMBA, paving the way for broad downstream applications in neuroscience research and clinical contexts.