Portrait of Smita Krishnaswamy

Smita Krishnaswamy

Affiliate Member
Associate Professor, Yale University
Université de Montréal
Yale
Research Topics
AI in Health
Brain-computer Interfaces
Cognitive Science
Computational Biology
Computational Neuroscience
Data Geometry
Data Science
Data Sparsity
Deep Learning
Dynamical Systems
Generative Models
Geometric Deep Learning
Graph Neural Networks
Information Theory
Manifold Learning
Molecular Modeling
Representation Learning
Spectral Learning

Biography

Our lab works on developing foundational mathematical machine learning and deep learning methods that incorporate graph-based learning, signal processing, information theory, data geometry and topology, optimal transport and dynamics modeling that are capable of exploratory analysis, scientific inference, interpretation and hypothesis generation big biomedical datasets ranging from single-cell data, to brain imaging, to molecular structural datasets arising from neuroscience, psychology, stem cell biology, cancer biology, healthcare, and biochemistry. Our works have been instrumental in dynamic trajectory learning from static snapshot data, data denoising, visualization, network inference, molecular structure modeling and more.

Publications

Hyperedge Representations with Hypergraph Wavelets: Applications to Spatial Transcriptomics
Xingzhi Sun
Charles Xu
João F. Rocha
Chen Liu
Benjamin Hollander-Bodie
Laney Goldman
Marcello DiStasio
Michael Perlmutter
In many data-driven applications, higher-order relationships among multiple objects are essential in capturing complex interactions. Hypergr… (see more)aphs, which generalize graphs by allowing edges to connect any number of nodes, provide a flexible and powerful framework for modeling such higher-order relationships. In this work, we introduce hypergraph diffusion wavelets and describe their favorable spectral and spatial properties. We demonstrate their utility for biomedical discovery in spatially resolved transcriptomics by applying the method to represent disease-relevant cellular niches for Alzheimer’s disease.
Hyperedge Representations with Hypergraph Wavelets: Applications to Spatial Transcriptomics
Xingzhi Sun
Charles Xu
João Felipe Rocha
Chen Liu
Benjamin Hollander-Bodie
Laney Goldman
Marcello DiStasio
Michael Perlmutter
In many data-driven applications, higher-order relationships among multiple objects are essential in capturing complex interactions. Hypergr… (see more)aphs, which generalize graphs by allowing edges to connect any number of nodes, provide a flexible and powerful framework for modeling such higher-order relationships. In this work, we introduce hypergraph diffusion wavelets and describe their favorable spectral and spatial properties. We demonstrate their utility for biomedical discovery in spatially resolved transcriptomics by applying the method to represent disease-relevant cellular niches for Alzheimer’s disease.
Geometry-Aware Generative Autoencoders for Metric Learning and Generative Modeling on Data Manifolds
Xingzhi Sun
Danqi Liao
Kincaid MacDonald
Yanlei Zhang
Guillaume Huguet
Ian Adelstein
Tim G. J. Rudner
Non-linear dimensionality reduction methods have proven successful at learning low-dimensional representations of high-dimensional point clo… (see more)uds on or near data manifolds. However, existing methods are not easily extensible—that is, for large datasets, it is prohibitively expensive to add new points to these embeddings. As a result, it is very difficult to use existing embeddings generatively, to sample new points on and along these manifolds. In this paper, we propose GAGA (geometry-aware generative autoencoders) a framework which merges the power of generative deep learning with non-linear manifold learning by: 1) learning generalizable geometry-aware neural network embeddings based on non-linear dimensionality reduction methods like PHATE and diffusion maps, 2) deriving a non-euclidean pullback metric on the embedded space to generate points faithfully along manifold geodesics, and 3) learning a flow on the manifold that allows us to transport populations. We provide illustration on easily-interpretable synthetic datasets and showcase results on simulated and real single cell datasets. In particular, we show that the geodesic-based generation can be especially important for scientific datasets where the manifold represents a state space and geodesics can represent dynamics of entities over this space.
Inferring Metabolic States from Single Cell Transcriptomic Data via Geometric Deep Learning
Holly Steach
Siddharth Viswanath
Yixuan He
Xitong Zhang
Natalia Ivanova
Matthew Hirn
Michael Perlmutter
Supervised latent factor modeling isolates cell-type-specific transcriptomic modules that underlie Alzheimer’s disease progression
Liam Hodgson
Yasser Iturria-Medina
Jo Anne Stratton
David A. Bennett
Novel cell states arise in embryonic cells devoid of key reprogramming factors
Scott E. Youlten
Liyun Miao
Caroline Hoppe
Curtis W. Boswell
Damir Musaev
Mario Abdelmessih
Valerie A. Tornini
Antonio J. Giraldez
The capacity for embryonic cells to differentiate relies on a large-scale reprogramming of the oocyte and sperm nucleus into a transient tot… (see more)ipotent state. In zebrafish, this reprogramming step is achieved by the pioneer factors Nanog, Pou5f3, and Sox19b (NPS). Yet, it remains unclear whether cells lacking this reprogramming step are directed towards wild type states or towards novel developmental canals in the Waddington landscape of embryonic development. Here we investigate the developmental fate of embryonic cells mutant for NPS by analyzing their single-cell gene expression profiles. We find that cells lacking the first developmental reprogramming steps can acquire distinct cell states. These states are manifested by gene expression modules that result from a failure of nuclear reprogramming, the persistence of the maternal program, and the activation of somatic compensatory programs. As a result, most mutant cells follow new developmental canals and acquire new mixed cell states in development. In contrast, a group of mutant cells acquire primordial germ cell-like states, suggesting that NPS-dependent reprogramming is dispensable for these cell states. Together, these results demonstrate that developmental reprogramming after fertilization is required to differentiate most canonical developmental programs, and loss of the transient totipotent state canalizes embryonic cells into new developmental states in vivo.
AAnet resolves a continuum of spatially-localized cell states to unveil tumor complexity
Aarthi Venkat
Scott E. Youlten
Beatriz P. San Juan
Carley Purcell
Matthew Amodio
Daniel B. Burkhardt
Andrew Benz
Jeff Holst
Cerys McCool
Annelie Mollbrink
Joakim Lundeberg
David van Dijk
Leonard D. Goldstein
Sarah Kummerfeld
Christine L. Chaffer
Identifying functionally important cell states and structure within a heterogeneous tumor remains a significant biological and computational… (see more) challenge. Moreover, current clustering or trajectory-based computational models are ill-equipped to address the notion that cancer cells reside along a phenotypic continuum. To address this, we present Archetypal Analysis network (AAnet), a neural network that learns key archetypal cell states within a phenotypic continuum of cell states in single-cell data. Applied to single-cell RNA sequencing data from pre-clinical models and a cohort of 34 clinical breast cancers, AAnet identifies archetypes that resolve distinct biological cell states and processes, including cell proliferation, hypoxia, metabolism and immune interactions. Notably, archetypes identified in primary tumors are recapitulated in matched liver, lung and lymph node metastases, demonstrating that a significant component of intratumoral heterogeneity is driven by cell intrinsic properties. Using spatial transcriptomics as orthogonal validation, AAnet-derived archetypes show discrete spatial organization within tumors, supporting their distinct archetypal biology. We further reveal that ligand:receptor cross-talk between cancer and adjacent stromal cells contributes to intra-archetypal biological mimicry. Finally, we use AAnet archetype identifiers to validate GLUT3 as a critical mediator of a hypoxic cell archetype harboring a cancer stem cell population, which we validate in human triple-negative breast cancer specimens. AAnet is a powerful tool to reveal functional cell states within complex samples from multimodal single-cell data.
BLIS-Net: Classifying and Analyzing Signals on Graphs
Charles Xu
Laney Goldman
Valentina Guo
Benjamin Hollander-Bodie
Maedee Trank-Greene
Ian Adelstein
Edward De Brouwer
Rex Ying
Michael Perlmutter
Graph neural networks (GNNs) have emerged as a powerful tool for tasks such as node classification and graph classification. However, much l… (see more)ess work has been done on signal classification, where the data consists of many functions (referred to as signals) defined on the vertices of a single graph. These tasks require networks designed differently from those designed for traditional GNN tasks. Indeed, traditional GNNs rely on localized low-pass filters, and signals of interest may have intricate multi-frequency behavior and exhibit long range interactions. This motivates us to introduce the BLIS-Net (Bi-Lipschitz Scattering Net), a novel GNN that builds on the previously introduced geometric scattering transform. Our network is able to capture both local and global signal structure and is able to capture both low-frequency and high-frequency information. We make several crucial changes to the original geometric scattering architecture which we prove increase the ability of our network to capture information about the input signal and show that BLIS-Net achieves superior performance on both synthetic and real-world data sets based on traffic flow and fMRI data.
Directed Scattering for Knowledge Graph-Based Cellular Signaling Analysis
Aarthi Venkat
Joyce Chew
Ferran Cardoso Rodriguez
Christopher J. Tape
Michael Perlmutter
Directed graphs are a natural model for many phenomena, in particular scientific knowledge graphs such as molecular interaction or chemical … (see more)reaction networks that define cellular signaling relationships. In these situations, source nodes typically have distinct biophysical properties from sinks. Due to their ordered and unidirectional relationships, many such networks also have hierarchical and multiscale structure. However, the majority of methods performing node- and edge-level tasks in machine learning do not take these properties into account, and thus have not been leveraged effectively for scientific tasks such as cellular signaling network inference. We propose a new framework called Directed Scattering Autoencoder (DSAE) which uses a directed version of a geometric scattering transform, combined with the non-linear dimensionality reduction properties of an autoencoder and the geometric properties of the hyperbolic space to learn latent hierarchies. We show this method outperforms numerous others on tasks such as embedding directed graphs and learning cellular signaling networks.
Bayesian Spectral Graph Denoising with Smoothness Prior
Samuel Leone
Xingzhi Sun
Michael Perlmutter
Here we consider the problem of denoising features associated to complex data, modeled as signals on a graph, via a smoothness prior. This i… (see more)s motivated in part by settings such as single-cell RNA where the data is very high-dimensional, but its structure can be captured via an affinity graph. This allows us to utilize ideas from graph signal processing. In particular, we present algorithms for the cases where the signal is perturbed by Gaussian noise, dropout, and uniformly distributed noise. The signals are assumed to follow a prior distribution defined in the frequency domain which favors signals which are smooth across the edges of the graph. By pairing this prior distribution with our three models of noise generation, we propose Maximum A Posteriori (M.A.P.) estimates of the true signal in the presence of noisy data and provide algorithms for computing the M.A.P. Finally, we demonstrate the algorithms’ ability to effectively restore signals from white noise on image data and from severe dropout in single-cell RNA sequence data.
Abstract B049: Pancreatic beta cell stress pathways drive pancreatic ductal adenocarcinoma development in obesity
Cathy C. Garcia
Aarthi Venkat
Alex Tong
Sherry Agabiti
Lauren Lawres
Rebecca Cardone
Richard G. Kibbey
Mandar Deepak Muzumdar
Assessing Neural Network Representations During Training Using Noise-Resilient Diffusion Spectral Entropy
Danqi Liao
Chen Liu
Benjamin W Christensen
Alexander Tong
Guillaume Huguet
Maximilian Nickel
Ian Adelstein
Entropy and mutual information in neural networks provide rich information on the learning process, but they have proven difficult to comput… (see more)e reliably in high dimensions. Indeed, in noisy and high-dimensional data, traditional estimates in ambient dimensions approach a fixed entropy and are prohibitively hard to compute. To address these issues, we leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures. Specifically, we define diffusion spectral entropy (DSE) in neural representations of a dataset as well as diffusion spectral mutual information (DSMI) between different variables representing data. First, we show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data that outperform classic Shannon entropy, nonparametric estimation, and mutual information neural estimation (MINE). We then study the evolution of representations in classification networks with supervised learning, self-supervision, or overfitting. We observe that (1) DSE of neural representations increases during training; (2) DSMI with the class label increases during generalizable learning but stays stagnant during overfitting; (3) DSMI with the input signal shows differing trends: on MNIST it increases, while on CIFAR-10 and STL-10 it decreases. Finally, we show that DSE can be used to guide better network initialization and that DSMI can be used to predict downstream classification accuracy across 962 models on ImageNet.