Portrait of Quentin Cappart

Quentin Cappart

Affiliate Member
Associate Professor, Polytechnique Montréal, Department of Computer Engineering and Software Engineering
Research Topics
Graph Neural Networks
Learning on Graphs
Reasoning

Biography

Quentin Cappart is an associate professor in the Department of Computer and Software Engineering at Polytechnique Montréal and an Affiliate member at Mila. He leads the CORAIL research group, which he co-founded with Louis-Martin Rousseau. Cappart obtained a BSc in engineering (2012), a MSc in computer engineering (2014), a MSc in management (2018) and a PhD (2017) at the Université catholique de Louvain (Belgium).

After his PhD, he joined Polytechnique Montréal and the International Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT) as a postdoctoral fellow (2018–2020). During these two years, he was also a research intern at ElementAI. Cappart’s main research area is the integration of machine learning with search procedures for solving combinatorial problems.

Current Students

PhD - Polytechnique Montréal
Principal supervisor :
Master's Research - Polytechnique Montréal
Principal supervisor :

Publications

WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuri… (see more)ng the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 33 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuri… (see more)ng the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 33 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
WorkArena: How Capable are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuri… (see more)ng the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 29 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
Towards a Generic Representation of Combinatorial Problems for Learning-Based Approaches
Léo Boisvert
Hélène Verhaeghe
In recent years, there has been a growing interest in using learning-based approaches for solving combinatorial problems, either in an end-t… (see more)o-end manner or in conjunction with traditional optimization algorithms. In both scenarios, the challenge lies in encoding the targeted combinatorial problems into a structure compatible with the learning algorithm. Many existing works have proposed problem-specific representations, often in the form of a graph, to leverage the advantages of \textit{graph neural networks}. However, these approaches lack generality, as the representation cannot be easily transferred from one combinatorial problem to another one. While some attempts have been made to bridge this gap, they still offer a partial generality only. In response to this challenge, this paper advocates for progress toward a fully generic representation of combinatorial problems for learning-based approaches. The approach we propose involves constructing a graph by breaking down any constraint of a combinatorial problem into an abstract syntax tree and expressing relationships (e.g., a variable involved in a constraint) through the edges. Furthermore, we introduce a graph neural network architecture capable of efficiently learning from this representation. The tool provided operates on combinatorial problems expressed in the XCSP3 format, handling all the constraints available in the 2023 mini-track competition. Experimental results on four combinatorial problems demonstrate that our architecture achieves performance comparable to dedicated architectures while maintaining generality. Our code and trained models are publicly available at https://github.com/corail-research/learning-generic-csp.
Deep Learning for Data-Driven Districting-and-Routing
Arthur Ferraz
Thibaut Vidal
Districting-and-routing is a strategic problem aiming to aggregate basic geographical units (e.g., zip codes) into delivery districts. Its g… (see more)oal is to minimize the expected long-term routing cost of performing deliveries in each district separately. Solving this stochastic problem poses critical challenges since repeatedly evaluating routing costs on a set of scenarios while searching for optimal districts takes considerable time. Consequently, solution approaches usually replace the true cost estimation with continuous cost approximation formulas extending Beardwood-Halton-Hammersley and Daganzo's work. These formulas commit errors that can be magnified during the optimization step. To reconcile speed and solution quality, we introduce a supervised learning and optimization methodology leveraging a graph neural network for delivery-cost estimation. This network is trained to imitate known costs generated on a limited subset of training districts. It is used within an iterated local search procedure to produce high-quality districting plans. Our computational experiments, conducted on five metropolitan areas in the United Kingdom, demonstrate that the graph neural network predicts long-term district cost operations more accurately, and that optimizing over this oracle permits large economic gains (10.12% on average) over baseline methods that use continuous approximation formulas or shallow neural networks. Finally, we observe that having compact districts alone does not guarantee high-quality solutions and that other learnable geometrical features of the districts play an essential role.
Deep Learning for Data-Driven Districting-and-Routing
Arthur Ferraz
Thibaut Vidal
An Improved Neuro-Symbolic Architecture to Fine-Tune Generative AI Systems
Chao Yin
Gilles Pesant
Learning Lagrangian Multipliers for the Travelling Salesman Problem
Augustin Parjadis
Bistra Dilkina
Aaron M. Ferber
Louis-Martin Rousseau
Learning Precedences for Scheduling Problems with Graph Neural Networks
Hélène Verhaeghe
Gilles Pesant
Claude-Guy Quimper
Winning the 2023 CityLearn Challenge: A Community-Based Hierarchical Energy Systems Coordination Algorithm
Andoni I. Garmendia
Francesco Morri
Hélène Le Cadre
. The effective management and control of building energy systems are crucial for reducing the energy consumption peak loads, CO 2 emissions… (see more), and ensuring the stability of the power grid, while maintaining optimal comfort levels within buildings. The difficulty to accommodate this trade-off is amplified by dynamic environmental conditions and the need for scalable solutions that can adapt across various building types and geographic locations. Acknowledging the importance of this problem, NeurIPS conference hosted since 2020 the CityLearn control challenge to foster the design of innovative solutions in building energy management. Participants were tasked with developing strategies that not only enhance energy efficiency but also prioritize sustainability and occupant comfort. This paper introduces the Community-based Hierarchical Energy Systems Co-ordination Algorithm ( CHESCA ), the winning approach of the 2023 edition. We rely on a hierarchical approach adaptable to an arbitrary number of buildings, first optimizing building-level metrics individually, and later refining these through a central community-level controller to improve grid-related metrics. Compared to the other high-ranked competitors, our approach demonstrated fast inference capabilities like learning-based methods, while offering a better interpretability and a superior generalization capabilities with minimal data requirements. This paper details our approach, supported by comprehensive experimental results and ablation studies.
Winning the 2023 CityLearn Challenge: A Community-Based Hierarchical Energy Systems Coordination Algorithm
Andoni I. Garmendia
Francesco Morri
Hélène Le Cadre
. The effective management and control of building energy systems are crucial for reducing the energy consumption peak loads, CO 2 emissions… (see more), and ensuring the stability of the power grid, while maintaining optimal comfort levels within buildings. The difficulty to accommodate this trade-off is amplified by dynamic environmental conditions and the need for scalable solutions that can adapt across various building types and geographic locations. Acknowledging the importance of this problem, NeurIPS conference hosted since 2020 the CityLearn control challenge to foster the design of innovative solutions in building energy management. Participants were tasked with developing strategies that not only enhance energy efficiency but also prioritize sustainability and occupant comfort. This paper introduces the Community-based Hierarchical Energy Systems Co-ordination Algorithm ( CHESCA ), the winning approach of the 2023 edition. We rely on a hierarchical approach adaptable to an arbitrary number of buildings, first optimizing building-level metrics individually, and later refining these through a central community-level controller to improve grid-related metrics. Compared to the other high-ranked competitors, our approach demonstrated fast inference capabilities like learning-based methods, while offering a better interpretability and a superior generalization capabilities with minimal data requirements. This paper details our approach, supported by comprehensive experimental results and ablation studies.
Global Rewards in Multi-Agent Deep Reinforcement Learning for Autonomous Mobility on Demand Systems
Heiko Hoppe
Tobias Enders
Maximilian Schiffer