The next cohort of our program, designed to empower policy professionals with a comprehensive understanding of AI, will take place in Ottawa on November 28 and 29.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Unveiling the Impact of Arsenic Toxicity on Immune Cells in Atherosclerotic Plaques: Insights from Single-Cell Multi-Omics Profiling
Accurate solar irradiance forecasting is crucial for managing energy generation and consumption in the rapidly evolving landscape of renewab… (see more)le energy. It enables renewable energy operators to make informed decisions and maximize their output. This study employs deep learning-based forecasting models to predict the Global Horizontal Irradiance (GHI) of the R&D platform situated in Ouarzazate, Morocco. A sensitivity analysis was conducted on multiple scenarios for a one day-ahead horizon. Moreover, a forecasting technique that encompasses numerous horizons, ranging from one day to three days in advance, was evaluated. The study's findings suggest that the encoder-decoder model we proposed exhibited superior performance compared to the other models tested and produced dependable predictions.
2023-11-22
2023 14th International Conference on Intelligent Systems: Theories and Applications (SITA) (published)
In our changing energy landscape, electricity is taking a major role in achieving decarbonization goals. Electricity can be a clean and effi… (see more)cient source of energy, and it is well-suited to help countries meet their climate goals. However, the electrical market is complex and constantly evolving, and it is important to carefully choose the design elements of the market to ensure that it is meeting its objectives. In this context, evaluating an electrical market's effectiveness requires a multifaceted approach that takes into account a range of elements, from environmental impact to economic viability. This paper provides an overview of several evaluation methods for different objectives to finally select the key criteria to consider in assisting decision-makers, regulators, and stakeholders in developing an electricity market that is not only effective but also reliable and sustainable.
2023-11-22
2023 14th International Conference on Intelligent Systems: Theories and Applications (SITA) (published)
We introduce a machine learning approach to determine the transition dynamics of silicon atoms on a single layer of carbon atoms, when stimu… (see more)lated by the electron beam of a scanning transmission electron microscope (STEM). Our method is data-centric, leveraging data collected on a STEM. The data samples are processed and filtered to produce symbolic representations, which we use to train a neural network to predict transition probabilities. These learned transition dynamics are then leveraged to guide a single silicon atom throughout the lattice to pre-determined target destinations. We present empirical analyses that demonstrate the efficacy and generality of our approach.
Scientists have long conjectured that the neocortex learns patterns in sensory data to generate top-down predictions of upcoming stimuli. In… (see more) line with this conjecture, different responses to pattern-matching vs pattern-violating visual stimuli have been observed in both spiking and somatic calcium imaging data. However, it remains unknown whether these pattern-violation signals are different between the distal apical dendrites, which are heavily targeted by top-down signals, and the somata, where bottom-up information is primarily integrated. Furthermore, it is unknown how responses to pattern-violating stimuli evolve over time as an animal gains more experience with them. Here, we address these unanswered questions by analyzing responses of individual somata and dendritic branches of layer 2/3 and layer 5 pyramidal neurons tracked over multiple days in primary visual cortex of awake, behaving female and male mice. We use sequences of Gabor patches with patterns in their orientations to create pattern-matching and pattern-violating stimuli, and two-photon calcium imaging to record neuronal responses. Many neurons in both layers show large differences between their responses to pattern-matching and pattern-violating stimuli. Interestingly, these responses evolve in opposite directions in the somata and distal apical dendrites, with somata becoming less sensitive to pattern-violating stimuli and distal apical dendrites more sensitive. These differences between the somata and distal apical dendrites may be important for hierarchical computation of sensory predictions and learning, since these two compartments tend to receive bottom-up and top-down information, respectively.
In this preliminary study, we investigate changes in handover behaviour when transferring hazardous objects with the help of a high-resoluti… (see more)on touch sensor. Participants were asked to hand over a safe and hazardous object (a full cup and an empty cup) while instrumented with a modified STS sensor. Our data shows a clear distinction in the length of handover for the full cup vs the empty one, with the former being slower. Sensor data further suggests a change in tactile behaviour dependent on the object's risk factor. The results of this paper motivate a deeper study of tactile factors which could characterize a risky handover, allowing for safer human-robot interactions in the future.
The emergence of open-source ML libraries such as TensorFlow and Google Auto ML has enabled developers to harness state-of-the-art ML algori… (see more)thms with minimal overhead. However, during this accelerated ML development process, said developers may often make sub-optimal design and implementation decisions, leading to the introduction of technical debt that, if not addressed promptly, can have a significant impact on the quality of the ML-based software. Developers frequently acknowledge these sub-optimal design and development choices through code comments during software development. These comments, which often highlight areas requiring additional work or refinement in the future, are known as self-admitted technical debt (SATD). This paper aims to investigate SATD in ML code by analyzing 318 open-source ML projects across five domains, along with 318 non-ML projects. We detected SATD in source code comments throughout the different project snapshots, conducted a manual analysis of the identified SATD sample to comprehend the nature of technical debt in the ML code, and performed a survival analysis of the SATD to understand the evolution of such debts. We observed: i) Machine learning projects have a median percentage of SATD that is twice the median percentage of SATD in non-machine learning projects. ii) ML pipeline components for data preprocessing and model generation logic are more susceptible to debt than model validation and deployment components. iii) SATDs appear in ML projects earlier in the development process compared to non-ML projects. iv) Long-lasting SATDs are typically introduced during extensive code changes that span multiple files exhibiting low complexity.
All types of research, development, and policy work can have unintended, adverse consequences - work in responsible artificial intelligence … (see more)(RAI), ethical AI, or ethics in AI is no exception.