The association of mobile devices with network resources (e.g., base stations, frequency bands/channels), known as load balancing, is critic
… (see more)al to reduce communication traffic congestion and network performance. Reinforcement learning (RL) has shown to be effective for communication load balancing and achieves better performance than currently used rule-based methods, especially when the traffic load changes quickly. However, RL-based methods usually need to interact with the environment for a large number of time steps to learn an effective policy and can be difficult to tune. In this work, we aim to improve the data efficiency of RL-based solutions to make them more suitable and applicable for real-world applications. Specifically, we propose a simple, yet efficient and effective deep RL-based wireless network load balancing framework. In this solution, a set of good initialization values for control actions are selected with some cost-efficient approach to center the training of the RL agent. Then, a deep RL-based agent is trained to find offsets from the initialization values that optimize the load balancing problem. Experimental evaluation on a set of dynamic traffic scenarios demonstrates the effectiveness and efficiency of the proposed method.