Publications

Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities
Eslam G. Al-Sakkari
Ahmed Ragab
Daria Camilla Boffito
Mouloud Amazouz
Causal Adversarial Perturbations for Individual Fairness and Robustness in Heterogeneous Data Spaces
Ahmad-reza Ehyaei
Kiarash Mohammadi
Amir-Hossein Karimi
S. Samadi
Common Challenges of Deep Reinforcement Learning Applications Development: An Empirical Study
Mohammad Mehdi Morovati
Florian Tambon
Mina Taraghi
Amin Nikanjam
Connecting Weighted Automata, Tensor Networks and Recurrent Neural Networks through Spectral Learning
Tianyu Li
Guillaume Rabusseau
Consolidating Separate Degradations Model via Weights Fusion and Distillation
Dinesh Daultani
Real-world images prevalently contain different varieties of degradation, such as motion blur and luminance noise. Computer vision recogniti… (see more)on models trained on clean images perform poorly on degraded images. Previously, several works have explored how to perform image classification of degraded images while training a single model for each degradation. Nevertheless, it becomes challenging to host several degradation models for each degradation on limited hardware applications and to estimate degradation parameters correctly at the run-time. This work proposes a method for effectively combining several models trained separately on different degradations into a single model to classify images with different types of degradations. Our proposed method is four-fold: (1) train a base model on clean images, (2) fine-tune the base model in-dividually for all given image degradations, (3) perform a fusion of weights given the fine-tuned models for individual degradations, (4) perform fine-tuning on given task using distillation and cross-entropy loss. Our proposed method can outperform previous state-of-the-art methods of pretraining in out-of-distribution generalization based on degradations such as JPEG compression, salt-and-pepper noise, Gaussian blur, and additive white Gaussian noise by 2.5% on CIFAR-100 dataset and by 1.3% on CIFAR-10 dataset. Moreover, our proposed method can handle degra-dation used for training without any explicit information about degradation at the inference time. Code will be available at https://github.com/dineshdaultani/FusionDistill.
Deep reinforcement learning for continuous wood drying production line control
François-Alexandre Tremblay
Michael Morin
Philippe Marier
Jonathan Gaudreault
E(3)-Equivariant Mesh Neural Networks
Thuan Nguyen Anh Trang
Khang Nhat Ngo
Daniel Levy
Thieu Vo
Truong Son Hy
Triangular meshes are widely used to represent three-dimensional objects. As a result, many recent works have addressed the need for geometr… (see more)ic deep learning on 3D meshes. However, we observe that the complexities in many of these architectures do not translate to practical performance, and simple deep models for geometric graphs are competitive in practice. Motivated by this observation, we minimally extend the update equations of E(n)-Equivariant Graph Neural Networks (EGNNs) (Satorras et al., 2021) to incorporate mesh face information and further improve it to account for long-range interactions through a hierarchy. The resulting architecture, Equivariant Mesh Neural Network (EMNN), outperforms other, more complicated equivariant methods on mesh tasks, with a fast run-time and no expensive preprocessing. Our implementation is available at https://github.com/HySonLab/EquiMesh.
Empirical Analysis of Model Selection for Heterogenous Causal Effect Estimation
Divyat Mahajan
Brady Neal
Vasilis Syrgkanis
We study the problem of model selection in causal inference, specifically for the case of conditional average treatment effect (CATE) estima… (see more)tion under binary treatments. Unlike model selection in machine learning, there is no perfect analogue of cross-validation as we do not observe the counterfactual potential outcome for any data point. Towards this, there have been a variety of proxy metrics proposed in the literature, that depend on auxiliary nuisance models estimated from the observed data (propensity score model, outcome regression model). However, the effectiveness of these metrics has only been studied on synthetic datasets as we can access the counterfactual data for them. We conduct an extensive empirical analysis to judge the performance of these metrics introduced in the literature, and novel ones introduced in this work, where we utilize the latest advances in generative modeling to incorporate multiple realistic datasets. Our analysis suggests novel model selection strategies based on careful hyperparameter tuning of CATE estimators and causal ensembling.
An Exact Method for (Constrained) Assortment Optimization Problems with Product Costs
Markus Leitner
Roberto Roberti
Claudio Sole
Exploring the digital divide: results of a survey informing mobile application development
Maira Corinne Claudio
Zachary Rehany
Katerina Stachtari
Elena Guadagno
Esli Osmanlliu
Introduction Mobile health apps risk widening health disparities if they overlook digital inclusion. The digital divide, encompassing access… (see more), familiarity, and readiness, poses a significant barrier to medical interventions. Existing literature lacks exploration of the digital divide's contributing factors. Hence, data are needed to comprehend the challenges in developing inclusive health apps. Methods We created a survey to gauge internet and smartphone access, smartphone familiarity, and readiness for using mobile health apps among caregivers of pediatric patients in tertiary care. Open-ended questions solicited feedback and suggestions on mobile health applications. Responses were categorized by similarity and compared. Developed with patient partners, the survey underwent cognitive testing and piloting for accuracy. Results Data from 209 respondents showed that 23% were affected by the digital divide, mainly due to unfamiliarity with digital skills. Among 49 short text responses about health app concerns, 31 mentioned security and confidentiality, with 7 mentioning the impersonal nature of such apps. Desired features included messaging healthcare providers, scheduling, task reminders, and simplicity. Conclusions This study underscores a digital divide among caregivers of pediatric patients, with nearly a quarter affected primarily due to a lack of digital comfort. Respondents emphasized user-friendliness and online security for health apps. Future apps should prioritize digital inclusion by addressing the significant barriers and carefully considering patient and family concerns.
Exploring validation metrics for offline model-based optimisation
Christopher Beckham
Alexandre Piché
David Vazquez
In offline model-based optimisation (MBO) we are interested in using machine learning to de-sign candidates that maximise some measure of d… (see more)esirability through an expensive but real-world scoring process. Offline MBO tries to approximate this expensive scoring function and use that to evaluate generated designs, however evaluation is non-exact because one approximation is being evaluated with another. Instead, we ask ourselves: if we did have the real world scoring function at hand, what cheap-to-compute validation metrics would correlate best with this? Since the real-world scoring function is available for simulated MBO datasets, insights obtained from this can be transferred over to real-world offline MBO tasks where the real-world scoring function is expensive to compute. To address this, we propose a conceptual evaluation framework that is amenable to measuring extrapolation, and apply this to conditional denoising diffusion models. Empirically, we find that two validation metrics – agreement and Frechet distance – correlate quite well with the ground truth. When there is high variability in conditional generation, feedback is required in the form of an approximated version of the real-world scoring function. Furthermore, we find that generating high-scoring samples may require heavily weighting the generative model in favour of sample quality, potentially at the cost of sample diversity.
Fairness Through Domain Awareness: Mitigating Popularity Bias For Music Discovery
Rebecca Salganik
As online music platforms grow, music recommender systems play a vital role in helping users navigate and discover content within their vast… (see more) musical databases. At odds with this larger goal, is the presence of popularity bias, which causes algorithmic systems to favor mainstream content over, potentially more relevant, but niche items. In this work we explore the intrinsic relationship between music discovery and popularity bias. To mitigate this issue we propose a domain-aware, individual fairness-based approach which addresses popularity bias in graph neural network (GNNs) based recommender systems. Our approach uses individual fairness to reflect a ground truth listening experience, i.e., if two songs sound similar, this similarity should be reflected in their representations. In doing so, we facilitate meaningful music discovery that is robust to popularity bias and grounded in the music domain. We apply our BOOST methodology to two discovery based tasks, performing recommendations at both the playlist level and user level. Then, we ground our evaluation in the cold start setting, showing that our approach outperforms existing fairness benchmarks in both performance and recommendation of lesser-known content. Finally, our analysis explains why our proposed methodology is a novel and promising approach to mitigating popularity bias and improving the discovery of new and niche content in music recommender systems.