Publications

Vulnerability of terrestrial vertebrate food webs to anthropogenic threats in Europe
Louise M. J. O'Connor
Francesca Cosentino
Michael B. J. Harfoot
Luigi Maiorano
Chiara Mancino
Wilfried Thuiller
DP-RDM: Adapting Diffusion Models to Private Domains Without Fine-Tuning
Jonathan Lebensold
Maziar Sanjabi
Pietro Astolfi
Kamalika Chaudhuri
Mike Rabbat
Chuan Guo
Language Models Can Reduce Asymmetry in Information Markets
Nasim Rahaman
Martin Weiss
Manuel Wüthrich
Erran L. Li
Bernhard Schölkopf
Multi-Resolution Continuous Normalizing Flows
Vikram Voleti
Chris Finlay
Assistive sensory-motor perturbations influence learned neural representations
Pavithra Rajeswaran
Alexandre Payeur
Amy L. Orsborn
Task errors are used to learn and refine motor skills. We investigated how task assistance influences learned neural representations using B… (see more)rain-Computer Interfaces (BCIs), which map neural activity into movement via a decoder. We analyzed motor cortex activity as monkeys practiced BCI with a decoder that adapted to improve or maintain performance over days. Population dimensionality remained constant or increased with learning, counter to trends with non-adaptive BCIs. Yet, over time, task information was contained in a smaller subset of neurons or population modes. Moreover, task information was ultimately stored in neural modes that occupied a small fraction of the population variance. An artificial neural network model suggests the adaptive decoders contribute to forming these compact neural representations. Our findings show that assistive decoders manipulate error information used for long-term learning computations, like credit assignment, which informs our understanding of motor learning and has implications for designing real-world BCIs.
From Representational Harms to Quality-of-Service Harms: A Case Study on Llama 2 Safety Safeguards
Khaoula Chehbouni
Megha Roshan
Emmanuel Ma
Futian Andrew Wei
Afaf Taïk
Jackie Ck Cheung
HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling
Daniel Duenias
Brennan Nichyporuk
Tammy Riklin-Raviv
The integration of diverse clinical modalities such as medical imaging and the tabular data obtained by the patients' Electronic Health Reco… (see more)rds (EHRs) is a crucial aspect of modern healthcare. The integrative analysis of multiple sources can provide a comprehensive understanding of a patient's condition and can enhance diagnoses and treatment decisions. Deep Neural Networks (DNNs) consistently showcase outstanding performance in a wide range of multimodal tasks in the medical domain. However, the complex endeavor of effectively merging medical imaging with clinical, demographic and genetic information represented as numerical tabular data remains a highly active and ongoing research pursuit. We present a novel framework based on hypernetworks to fuse clinical imaging and tabular data by conditioning the image processing on the EHR's values and measurements. This approach aims to leverage the complementary information present in these modalities to enhance the accuracy of various medical applications. We demonstrate the strength and the generality of our method on two different brain Magnetic Resonance Imaging (MRI) analysis tasks, namely, brain age prediction conditioned by subject's sex, and multiclass Alzheimer's Disease (AD) classification conditioned by tabular data. We show that our framework outperforms both single-modality models and state-of-the-art MRI-tabular data fusion methods. The code, enclosed to this manuscript will be made publicly available.
Unravelling the neural dynamics of hypnotic susceptibility: Aperiodic neural activity as a central feature of hypnosis
Mathieu Landry
Jason da Silva Castanheira
Catherine Boisvert
Floriane Rousseaux
Jérôme Sackur
Amir Raz
Philippe Richebé
David Ogez
Pierre Rainville
Solving Combinatorial Pricing Problems using Embedded Dynamic Programming Models
Quang Minh Bui
Jos'e Neto
The combinatorial pricing problem (CPP) is a bilevel problem in which the leader maximizes their revenue by imposing tolls on certain items … (see more)that they can control. Based on the tolls set by the leader, the follower selects a subset of items corresponding to an optimal solution of a combinatorial optimization problem. To accomplish the leader's goal, the tolls need to be sufficiently low to discourage the follower from choosing the items offered by the competitors. In this paper, we derive a single-level reformulation for the CPP by rewriting the follower's problem as a longest path problem using a dynamic programming model, and then taking its dual and applying strong duality. We proceed to solve the reformulation in a dynamic fashion with a cutting plane method. We apply this methodology to 2 distinct dynamic programming models, namely, a novel formulation designated as selection diagram and the well-known decision diagram. We also produce numerical results to evaluate their performances across 3 different specializations of the CPP and a closely related problem that is the knapsack interdiction problem. Our results showcase the potential of the 2 proposed reformulations over the natural value function approach, expanding the set of tools to solve combinatorial bilevel programs.
Two-stage Multiple-Model Compression Approach for Sampled Electrical Signals
Corentin Presvôts
Michel Kieffer
Thibault Prevost
Patrick Panciatici
Zuxing Li
This paper presents a two-stage Multiple-Model Compression (MMC) approach for sampled electrical waveforms. To limit latency, the processing… (see more) is window-based, with a window length commensurate to the electrical period. For each window, the first stage compares several parametric models to get a coarse representation of the samples. The second stage then compares different residual compression techniques to minimize the norm of the reconstruction error. The allocation of the rate budget among the two stages is optimized. The proposed MMC approach provides better signal-to-noise ratios than state-of-the-art solutions on periodic and transient waveforms.
Graph-Jigsaw Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection
Ali Karami
Thi Kieu Khanh Ho
Offline Multitask Representation Learning for Reinforcement Learning
Haque Ishfaq
Thanh Nguyen-Tang
Songtao Feng
Raman Arora
Mengdi Wang
Ming Yin 0003