We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
CAMAP: Artificial neural networks unveil the role of 1 codon arrangement in modulating MHC-I peptides 2 presentation
30 MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and 31 neoplastic cells by CD8 T cells. However… (see more), accurately predicting the MAP repertoire remains 32 difficult, because only a fraction of the transcriptome generates MAPs. In this study, we 33 investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We 34 developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), 35 predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons 36 (MCCs), while excluding the MCC per se . CAMAP predictions were significantly more accurate 37 when using original codon sequences than shuffled codon sequences which reflect amino acid 38 usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity 39 to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, 40 transcript expression level and CAMAP scores was particularly useful to increaser MAP prediction 41 accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions 42 flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation 43 of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon 44 arrangement in the regulation of MAP presentation and support integration of both translational 45 and post-translational events in predictive algorithms to ameliorate modeling of the 46 immunopeptidome. 47 48 49 they modulated the levels of SIINFEKL presentation in both constructs, but enhanced translation efficiency could only be detected for OVA-RP. These data show that codon arrangement can modulate MAP presentation strength without any changes in the amino
CAMAP: Artificial neural networks unveil the role of 1 codon arrangement in modulating MHC-I peptides 2 presentation discovery of minor histocompatibility with
30 MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and 31 neoplastic cells by CD8 T cells. However… (see more), accurately predicting the MAP repertoire remains 32 difficult, because only a fraction of the transcriptome generates MAPs. In this study, we 33 investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We 34 developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), 35 predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons 36 (MCCs), while excluding the MCC per se . CAMAP predictions were significantly more accurate 37 when using original codon sequences than shuffled codon sequences which reflect amino acid 38 usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity 39 to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, 40 transcript expression level and CAMAP scores was particularly useful to increaser MAP prediction 41 accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions 42 flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation 43 of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon 44 arrangement in the regulation of MAP presentation and support integration of both translational 45 and post-translational events in predictive algorithms to ameliorate modeling of the 46 immunopeptidome. 47 48 49 they modulated the levels of SIINFEKL presentation in both constructs, but enhanced translation efficiency could only be detected for OVA-RP. These data show that codon arrangement can modulate MAP presentation strength without any changes in the amino
Can Open Source Licenses Help Regulate Lethal Autonomous Weapons?
Lethal autonomous weapon systems (LAWS, ethal autonomous weapon also known as killer robots) are a real and emerging technology that have th… (see more)e potential to radically transform warfare. Because of the myriad of moral, legal, privacy, and security risks the technology introduces, many scholars and advocates have called for a ban on the development, production, and use of fully autonomous weapons [1], [2].
Can models with particular structure avoid being biased towards spurious correlation in out-of-distribution (OOD) generalization? Peters et … (see more)al. (2016) provides a positive answer for linear cases. In this paper, we use a functional modular probing method to analyze deep model structures under OOD setting. We demonstrate that even in biased models (which focus on spurious correlation) there still exist unbiased functional subnetworks. Furthermore, we articulate and demonstrate the functional lottery ticket hypothesis: full network contains a subnetwork that can achieve better OOD performance. We then propose Modular Risk Minimization to solve the subnetwork selection problem. Our algorithm learns the subnetwork structure from a given dataset, and can be combined with any other OOD regularization methods. Experiments on various OOD generalization tasks corroborate the effectiveness of our method.
Multi-Task Learning (MTL) networks have emerged as a promising method for transferring learned knowledge across different tasks. However, MT… (see more)L must deal with challenges such as: overfitting to low resource tasks, catastrophic forgetting, and negative task transfer, or learning interference. Often, in Natural Language Processing (NLP), a separate model per task is needed to obtain the best performance. However, many fine-tuning approaches are both parameter inefficient, i.e., potentially involving one new model per task, and highly susceptible to losing knowledge acquired during pretraining. We propose a novel Transformer based Hypernetwork Adapter consisting of a new conditional attention mechanism as well as a set of task-conditioned modules that facilitate weight sharing. Through this construction, we achieve more efficient parameter sharing and mitigate forgetting by keeping half of the weights of a pretrained model fixed. We also use a new multi-task data sampling strategy to mitigate the negative effects of data imbalance across tasks. Using this approach, we are able to surpass single task fine-tuning methods while being parameter and data efficient (using around 66% of the data). Compared to other BERT Large methods on GLUE, our 8-task model surpasses other Adapter methods by 2.8% and our 24-task model outperforms by 0.7-1.0% models that use MTL and single task fine-tuning. We show that a larger variant of our single multi-task model approach performs competitively across 26 NLP tasks and yields state-of-the-art results on a number of test and development sets.
We present an end-to-end, model-based deep reinforcement learning agent which dynamically attends to relevant parts of its state during plan… (see more)ning. The agent uses a bottleneck mechanism over a set-based representation to force the number of entities to which the agent attends at each planning step to be small. In experiments, we investigate the bottleneck mechanism with several sets of customized environments featuring different challenges. We consistently observe that the design allows the planning agents to generalize their learned task-solving abilities in compatible unseen environments by attending to the relevant objects, leading to better out-of-distribution generalization performance.
In this paper, we investigate the problem of system identification for autonomous switched linear systems with complete state observations.… (see more) We propose switched least squares method for the identification for switched linear systems, show that this method is strongly consistent, and derive data-dependent and data-independent rates of convergence. In particular, our data-dependent rate of convergence shows that, almost surely, the system identification error is O (cid:0)(cid:112) log( T ) /T (cid:1) where T is the time horizon. These results show that our method for switched linear systems has the same rate of convergence as least squares method for non-switched linear systems. We compare our results with those in the literature. We present numerical examples to illustrate the performance of the proposed system identification method.
Modularity is a compelling solution to continual learning (CL), the problem of modeling sequences of related tasks. Learning and then compos… (see more)ing modules to solve different tasks provides an abstraction to address the principal challenges of CL including catastrophic forgetting, backward and forward transfer across tasks, and sub-linear model growth. We introduce local module composition (LMC), an approach to modular CL where each module is provided a local structural component that estimates a module's relevance to the input. Dynamic module composition is performed layer-wise based on local relevance scores. We demonstrate that agnosticity to task identities (IDs) arises from (local) structural learning that is module-specific as opposed to the task- and/or model-specific as in previous works, making LMC applicable to more CL settings compared to previous works. In addition, LMC also tracks statistics about the input distribution and adds new modules when outlier samples are detected. In the first set of experiments, LMC performs favorably compared to existing methods on the recent Continual Transfer-learning Benchmark without requiring task identities. In another study, we show that the locality of structural learning allows LMC to interpolate to related but unseen tasks (OOD), as well as to compose modular networks trained independently on different task sequences into a third modular network without any fine-tuning. Finally, in search for limitations of LMC we study it on more challenging sequences of 30 and 100 tasks, demonstrating that local module selection becomes much more challenging in presence of a large number of candidate modules. In this setting best performing LMC spawns much fewer modules compared to an oracle based baseline, however, it reaches a lower overall accuracy. The codebase is available under https://github.com/oleksost/LMC.
Reinforcement learning methods trained on few environments rarely learn policies that generalize to unseen environments. To improve generali… (see more)zation, we incorporate the inherent sequential structure in reinforcement learning into the representation learning process. This approach is orthogonal to recent approaches, which rarely exploit this structure explicitly. Specifically, we introduce a theoretically motivated policy similarity metric (PSM) for measuring behavioral similarity between states. PSM assigns high similarity to states for which the optimal policies in those states as well as in future states are similar. We also present a contrastive representation learning procedure to embed any state similarity metric, which we instantiate with PSM to obtain policy similarity embeddings (PSEs). We demonstrate that PSEs improve generalization on diverse benchmarks, including LQR with spurious correlations, a jumping task from pixels, and Distracting DM Control Suite.
Flow-based models are powerful tools for designing probabilistic models with tractable density. This paper introduces Convex Potential Flows… (see more) (CP-Flow), a natural and efficient parameterization of invertible models inspired by the optimal transport (OT) theory. CP-Flows are the gradient map of a strongly convex neural potential function. The convexity implies invertibility and allows us to resort to convex optimization to solve the convex conjugate for efficient inversion. To enable maximum likelihood training, we derive a new gradient estimator of the log-determinant of the Jacobian, which involves solving an inverse-Hessian vector product using the conjugate gradient method. The gradient estimator has constant-memory cost, and can be made effectively unbiased by reducing the error tolerance level of the convex optimization routine. Theoretically, we prove that CP-Flows are universal density approximators and are optimal in the OT sense. Our empirical results show that CP-Flow performs competitively on standard benchmarks of density estimation and variational inference.
Pretrained language models have significantly 001 improved the performance of down-stream 002 language understanding tasks, including ex-00… (see more)3 tractive question answering, by providing 004 high-quality contextualized word embeddings. 005 However, training question answering models 006 still requires large amounts of annotated data 007 for specific domains. In this work, we pro-008 pose a cooperative, self-play learning frame-009 work, REGEX, for automatically generating 010 more non-trivial question-answer pairs to im-011 prove model performance. REGEX is built 012 upon a masked answer extraction task with an 013 interactive learning environment containing an 014 answer entity REcognizer, a question Gener-015 ator, and an answer EXtractor. Given a pas-016 sage with a masked entity, the generator gen-017 erates a question around the entity, and the 018 extractor is trained to extract the masked en-019 tity with the generated question and raw texts. 020 The framework allows the training of question 021 generation and answering models on any text 022 corpora without annotation. We further lever-023 age a reinforcement learning technique to re-024 ward generating high-quality questions and to 025 improve the answer extraction model’s perfor-026 mance. Experiment results show that REGEX 027 outperforms the state-of-the-art (SOTA) pre-028 trained language models and transfer learning 029 approaches on standard question-answering 030 benchmarks, and yields the new SOTA per-031 formance under given model size and transfer 032 learning settings. 033