Deep learning for AI
Yann LeCun
Geoffrey Hinton
How can neural networks learn the rich internal representations required for difficult tasks such as recognizing objects or understanding la… (see more)nguage?
Deep learning for AI
Yann LeCun
Geoffrey Hinton
Deep learning for AI
Yann LeCun
Geoffrey Hinton
Deep learning for AI
Yann LeCun
Geoffrey Hinton
How can neural networks learn the rich internal representations required for difficult tasks such as recognizing objects or understanding la… (see more)nguage?
Deep learning for AI
Yann LeCun
Geoffrey Hinton
Large-Scale Intrinsic Functional Brain Organization Emerges from Three Canonical Spatiotemporal Patterns
Taylor Bolt
Jason S. Nomi
Catie Chang
B.T. Yeo
Lucina Q. Uddin
Shella Keilholz
A parsimonious description of global functional brain organization in three spatiotemporal patterns
Taylor Bolt
Jason S. Nomi
Jorge A. Salas
Catie Chang
B. T. Thomas Yeo
Lucina Q. Uddin
S. Keilholz
A Data Mining Analysis of Cross-Regional Study of Apparel Consumption
Osmud Rahman
Smart about medications (SAM): a digital solution to enhance medication management following hospital discharge
Santiago Márquez Fosser
Nadar Mahmoud
Bettina Habib
Daniala L Weir
Fiona Chan
Rola El Halabieh
Jeanne Vachon
Manish Thakur
Thai Tran
Melissa Bustillo
Caroline Beauchamp
André Bonnici
Robyn Tamblyn
The Cost of Untracked Diversity in Brain-Imaging Prediction
Oualid Benkarim
Casey Paquola
Bo-yong Park
Valeria Kebets
Seok-Jun Hong
Reinder Vos de Wael
Shaoshi Zhang
B.T. Thomas Yeo
Michael Eickenberg
Tian Ge
Jean-Baptiste Poline
Boris C Bernhardt
SPeCiaL: Self-Supervised Pretraining for Continual Learning
Lucas Caccia
Improving Continuous Normalizing Flows using a Multi-Resolution Framework
Vikram Voleti
Chris Finlay
Recent work has shown that Continuous Normalizing Flows (CNFs) can serve as generative models of images with exact likelihood calculation an… (see more)d invertible generation/density estimation. In this work we introduce a Multi-Resolution variant of such models (MRCNF). We introduce a transformation between resolutions that allows for no change in the log likelihood. We show that this approach yields comparable likelihood values for various image datasets, with improved performance at higher resolutions, with fewer parameters, using only 1 GPU.