Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Alain Tapp
Alumni
Publications
Local Data Debiasing for Fairness Based on Generative Adversarial Training
The widespread use of automated decision processes in many areas of our society raises serious ethical issues with respect to the fairness o… (see more)f the process and the possible resulting discrimination. To solve this issue, we propose a novel adversarial training approach called GANSan for learning a sanitizer whose objective is to prevent the possibility of any discrimination (i.e., direct and indirect) based on a sensitive attribute by removing the attribute itself as well as the existing correlations with the remaining attributes. Our method GANSan is partially inspired by the powerful framework of generative adversarial networks (in particular Cycle-GANs), which offers a flexible way to learn a distribution empirically or to translate between two different distributions. In contrast to prior work, one of the strengths of our approach is that the sanitization is performed in the same space as the original data by only modifying the other attributes as little as possible, thus preserving the interpretability of the sanitized data. Consequently, once the sanitizer is trained, it can be applied to new data locally by an individual on their profile before releasing it. Finally, experiments on real datasets demonstrate the effectiveness of the approach as well as the achievable trade-off between fairness and utility.
Black-box explanation is the problem of explaining how a machine learning model -- whose internal logic is hidden to the auditor and general… (see more)ly complex -- produces its outcomes. Current approaches for solving this problem include model explanation, outcome explanation as well as model inspection. While these techniques can be beneficial by providing interpretability, they can be used in a negative manner to perform fairwashing, which we define as promoting the false perception that a machine learning model respects some ethical values. In particular, we demonstrate that it is possible to systematically rationalize decisions taken by an unfair black-box model using the model explanation as well as the outcome explanation approaches with a given fairness metric. Our solution, LaundryML, is based on a regularized rule list enumeration algorithm whose objective is to search for fair rule lists approximating an unfair black-box model. We empirically evaluate our rationalization technique on black-box models trained on real-world datasets and show that one can obtain rule lists with high fidelity to the black-box model while being considerably less unfair at the same time.
2019-05-24
Proceedings of the 36th International Conference on Machine Learning (published)