Approximate minimization of weighted tree automata
Borja Balle
Aspirations and Practice of Model Documentation: Moving the Needle with Nudging and Traceability
Avinash Bhat
Austin Coursey
Grace Hu
Sixian Li
Nadia Nahar
Shurui Zhou
Christian Kästner
Attention-based Neural Cellular Automata
Mattie Tesfaldet
Recent extensions of Cellular Automata (CA) have incorporated key ideas from modern deep learning, dramatically extending their capabilities… (see more) and catalyzing a new family of Neural Cellular Automata (NCA) techniques. Inspired by Transformer-based architectures, our work presents a new class of _attention-based_ NCAs formed using a spatially localized—yet globally organized—self-attention scheme. We introduce an instance of this class named _Vision Transformer Cellular Automata (ViTCA)_. We present quantitative and qualitative results on denoising autoencoding across six benchmark datasets, comparing ViTCA to a U-Net, a U-Net-based CA baseline (UNetCA), and a Vision Transformer (ViT). When comparing across architectures configured to similar parameter complexity, ViTCA architectures yield superior performance across all benchmarks and for nearly every evaluation metric. We present an ablation study on various architectural configurations of ViTCA, an analysis of its effect on cell states, and an investigation on its inductive biases. Finally, we examine its learned representations via linear probes on its converged cell state hidden representations, yielding, on average, superior results when compared to our U-Net, ViT, and UNetCA baselines.
Behind the Machine's Gaze: Biologically Constrained Neural Networks Exhibit Human-like Visual Attention
Leo Schwinn
B. Eskofier
Dario Zanca
.
Behind the Machine's Gaze: Neural Networks with Biologically-inspired Constraints Exhibit Human-like Visual Attention
Leo Schwinn
Bjoern Eskofier
Dario Zanca
By and large, existing computational models of visual attention tacitly assume perfect vision and full access to the stimulus and thereby de… (see more)viate from foveated biological vision. Moreover, modeling top-down attention is generally reduced to the integration of semantic features without incorporating the signal of a high-level visual tasks that have been shown to partially guide human attention. We propose the Neural Visual Attention (NeVA) algorithm to generate visual scanpaths in a top-down manner. With our method, we explore the ability of neural networks on which we impose a biologically-inspired foveated vision constraint to generate human-like scanpaths without directly training for this objective. The loss of a neural network performing a downstream visual task (i.e., classification or reconstruction) flexibly provides top-down guidance to the scanpath. Extensive experiments show that our method outperforms state-of-the-art unsupervised human attention models in terms of similarity to human scanpaths. Additionally, the flexibility of the framework allows to quantitatively investigate the role of different tasks in the generated visual behaviors. Finally, we demonstrate the superiority of the approach in a novel experiment that investigates the utility of scanpaths in real-world applications, where imperfect viewing conditions are given.
Beyond accuracy: generalization properties of bio-plausible temporal credit assignment rules
Yuhan Helena Liu
Arna Ghosh
Eric Todd SheaBrown
Beyond Mahalanobis Distance for Textual OOD Detection
Pierre Colombo
Eduardo Dadalto Câmara Gomes
Guillaume Staerman
Nathan Noiry
Biasly: a machine learning based platform for automatic racial discrimination detection in online texts
David Bamman
Chris Dyer
Noah A. Smith. 2014
Steven Bird
Ewan Klein
Edward Loper
Nat-527
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova. 2019
Bert
Samuel Gehman
Suchin Gururangan
Maarten Sap
Dan Hendrycks
Kevin Gimpel. 2020
Gaussian
Alex Lamb
Di He … (see 22 more)
Anirudh Goyal
Guolin Ke
Feng Liao
Zhenzhong Lan
Mingda Chen
Sebastian Goodman
Yann LeCun
Bernhard E. Boser
J. Denker
Don-608 nie Henderson
Robin Howard
Wayne Hubbard
Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
Mike Lewis
Warning : this paper contains content that may 001 be offensive or upsetting. 002 Detecting hateful, toxic, and otherwise racist 003 or sexi… (see more)st language in user-generated online con-004 tents has become an increasingly important task 005 in recent years. Indeed, the anonymity, the 006 transience, the size of messages, and the dif-007 ficulty of management, facilitate the diffusion 008 of racist or hateful messages across the Inter-009 net. The critical influence of this cyber-racism 010 is no longer limited to social media, but also 011 has a significant effect on our society : corpo-012 rate business operation, users’ health, crimes, 013 etc. Traditional racist speech reporting chan-014 nels have proven inadequate due to the enor-015 mous explosion of information, so there is an 016 urgent need for a method to automatically and 017 promptly detect texts with racial discrimination. 018 We propose in this work, a machine learning-019 based approach to enable automatic detection 020 of racist text content over the internet. State-of-021 the-art machine learning models that are able 022 to grasp language structures are adapted in this 023 study. Our main contribution include 1) a large 024 scale racial discrimination data set collected 025 from three distinct sources and annotated ac-026 cording to a guideline developed by specialists, 027 2) a set of machine learning models with vari-028 ous architectures for racial discrimination de-029 tection, and 3) a web-browser-based software 030 that assist users to debias their texts when us-031 ing the internet. All these resources are made 032 publicly available.
Bisimulation metrics and norms for real-weighted automata
Borja Balle
Pascale Gourdeau
Building Together - Towards a Roadmap for African Language Technologies
Kathleen Siminyu
Jade Abbott
Kọ́lá Túbọ̀sún
Aremu Anuoluwapo
Blessing Kudzaishe Sibanda
Kofi Yeboah
Masabata Mokgesi-Selinga
Frederick R. Apina
Angela Thandizwe Mthembu
Arshath Ramkilowan
Babatunde Oladimeji
Challenges in leveraging GANs for few-shot data augmentation
Christopher Beckham
Issam Hadj Laradji
Pau Rodriguez
David Vazquez
Chunked Autoregressive GAN for Conditional Waveform Synthesis
Max Morrison
Rithesh Kumar
Kundan Kumar
Prem Seetharaman