Performance-gated deliberation: A context-adapted strategy in which urgency is opportunity cost
Maximilian Puelma Touzel
Paul Cisek
Finding the right amount of deliberation, between insufficient and excessive, is a hard decision making problem that depends on the value we… (see more) place on our time. Average-reward, putatively encoded by tonic dopamine, serves in existing reinforcement learning theory as the opportunity cost of time, including deliberation time. Importantly, this cost can itself vary with the environmental context and is not trivial to estimate. Here, we propose how the opportunity cost of deliberation can be estimated adaptively on multiple timescales to account for non-stationary contextual factors. We use it in a simple decision-making heuristic based on average-reward reinforcement learning (AR-RL) that we call Performance-Gated Deliberation (PGD). We propose PGD as a strategy used by animals wherein deliberation cost is implemented directly as urgency, a previously characterized neural signal effectively controlling the speed of the decision-making process. We show PGD outperforms AR-RL solutions in explaining behaviour and urgency of non-human primates in a context-varying random walk prediction task and is consistent with relative performance and urgency in a context-varying random dot motion task. We make readily testable predictions for both neural activity and behaviour.
Predicting the probability distribution of bus travel time to measure the reliability of public transport services
L. Ricard
Guy Desaulniers
Andrea Lodi
Louis-Martin Rousseau
Predicting the probability distribution of bus travel time to measure the reliability of public transport services
L'ea Ricard
Guy Desaulniers
Andrea Lodi
Louis-Martin Rousseau
Subgraph Retrieval Enhanced Model for Multi-hop Knowledge Base Question Answering
Jie Zhang
Xiaokang Zhang
Jifan Yu
Jie Tang
Cuiping Li
Hong Chen
On the estimation of discrete choice models to capture irrational customer behaviors
Sanjay Dominik Jena
Andrea Lodi
Claudio Sole
The random utility maximization model is by far the most adopted framework to estimate consumer choice behavior. However, behavioral economi… (see more)cs has provided strong empirical evidence of irrational choice behaviors, such as halo effects, that are incompatible with this framework. Models belonging to the random utility maximization family may therefore not accurately capture such irrational behavior. Hence, more general choice models, overcoming such limitations, have been proposed. However, the flexibility of such models comes at the price of increased risk of overfitting. As such, estimating such models remains a challenge. In this work, we propose an estimation method for the recently proposed generalized stochastic preference choice model, which subsumes the family of random utility maximization models and is capable of capturing halo effects. In particular, we propose a column-generation method to gradually refine the discrete choice model based on partially ranked preference sequences. Extensive computational experiments indicate that our model, explicitly accounting for irrational preferences, can significantly boost the predictive accuracy on both synthetic and real-world data instances. Summary of Contribution: In this work, we propose an estimation method for the recently proposed generalized stochastic preference choice model, which subsumes the family of random utility maximization models and is capable of capturing halo effects. Specifically, we show how to use partially ranked preferences to efficiently model rational and irrational customer types from transaction data. Our estimation procedure is based on column generation, where relevant customer types are efficiently extracted by expanding a treelike data structure containing the customer behaviors. Furthermore, we propose a new dominance rule among customer types whose effect is to prioritize low orders of interactions among products. An extensive set of experiments assesses the predictive accuracy of the proposed approach by comparing it against rank-based methods with only rational preferences and with more general benchmarks from the literature. Our results show that accounting for irrational preferences can boost predictive accuracy by 12.5% on average when tested on a real-world data set from a large chain of grocery and drug stores.
The generalizability of pre-processing techniques on the accuracy and fairness of data-driven building models: a case study
Ying Sun
Fariborz Haghighat
The Power of Prompt Tuning for Low-Resource Semantic Parsing
Nathan Schucher
Harm de Vries
Prompt tuning has recently emerged as an effective method for adapting pre-trained language models to a number of language understanding and… (see more) generation tasks. In this paper, we investigate prompt tuning for semantic parsing—the task of mapping natural language utterances onto formal meaning representations. On the low-resource splits of Overnight and TOPv2, we find that a prompt tuned T5-xl significantly outperforms its fine-tuned counterpart, as well as strong GPT-3 and BART baselines. We also conduct ablation studies across different model scales and target representations, finding that, with increasing model scale, prompt tuned T5 models improve at generating target representations that are far from the pre-training distribution.
Unsupervised Dependency Graph Network
Yikang Shen
Shawn Tan
Peng Li
Jie Zhou
Using Interactive Feedback to Improve the Accuracy and Explainability of Question Answering Systems Post-Deployment
Zichao Li
Prakhar Sharma
Xing Han Lu
Using Population Datasets to Identify the Brain Basis of Social Isolation
Public Perspectives on Exposure Notification Apps: A Patient and Citizen Co-Designed Study
Esli Osmanlliu
Jesseca Paquette
Maria Alejandra Rodriguez Duarte
Sylvain Bédard
Nathalie de Marcellis-Warin
Majlinda Zhegu
Marie-Eve Bouthillier
Annie-Danielle Grenier
Paul Lewis
Marie-Pascale Pomey
Canada deployed a digital exposure notification app (COVID Alert) as a strategy to support manual contact tracing. Our aims are to (1) asses… (see more)s the use, knowledge, and concerns of the COVID Alert app, (2) identify predictors of app downloads, and (3) develop strategies to promote social acceptability. A 36-item questionnaire was co-designed by 12 citizens and patients partnered with 16 academic researchers and was distributed in the province of Québec, Canada, from May 27 to 28 June 2021. Of 959 respondents, 43% had downloaded the app. Messaging from government sources constituted the largest influence on app download. Infrequent social contacts and perceived app inefficacy were the main reasons not to download the app. Cybersecurity, data confidentiality, loss of privacy, and geolocation were the most frequent concerns. Nearly half of the respondents inaccurately believed that the app used geolocation. Most respondents supported citizen involvement in app development. The identified predictors for app uptake included nine characteristics. In conclusion, this project highlights four key themes on how to promote the social acceptability of such tools: (1) improved communication and explanation of key app characteristics, (2) design features that incentivize adoption, (3) inclusive socio-technical features, and (4) upstream public partnership in development and deployment.
Public Perspectives on Exposure Notification Apps: A Patient and Citizen Co-Designed Study
Esli Osmanlliu
Jesseca Paquette
Maria Alejandra Rodriguez Duarte
Sylvain Bédard
Nathalie de Marcellis-Warin
Majlinda Zhegu
Marie-Eve Bouthillier
Annie-Danielle Grenier
Paul Lewis
Marie-Pascale Pomey
Canada deployed a digital exposure notification app (COVID Alert) as a strategy to support manual contact tracing. Our aims are to (1) asses… (see more)s the use, knowledge, and concerns of the COVID Alert app, (2) identify predictors of app downloads, and (3) develop strategies to promote social acceptability. A 36-item questionnaire was co-designed by 12 citizens and patients partnered with 16 academic researchers and was distributed in the province of Québec, Canada, from May 27 to 28 June 2021. Of 959 respondents, 43% had downloaded the app. Messaging from government sources constituted the largest influence on app download. Infrequent social contacts and perceived app inefficacy were the main reasons not to download the app. Cybersecurity, data confidentiality, loss of privacy, and geolocation were the most frequent concerns. Nearly half of the respondents inaccurately believed that the app used geolocation. Most respondents supported citizen involvement in app development. The identified predictors for app uptake included nine characteristics. In conclusion, this project highlights four key themes on how to promote the social acceptability of such tools: (1) improved communication and explanation of key app characteristics, (2) design features that incentivize adoption, (3) inclusive socio-technical features, and (4) upstream public partnership in development and deployment.