We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Step-GRAND: A Low Latency Universal Soft-Input Decoder
GRAND features both soft-input and hard-input variants that are well suited to efficient hardware implementations that can be characterized … (see more)with achievable average and worst-case decoding latency. This paper introduces step-GRAND, a soft-input variant of GRAND that, in addition to achieving appealing average decoding latency, also reduces the worst-case decoding latency of the corresponding hardware implementation. The hardware implementation results demonstrate that the proposed step-GRAND can decode CA-polar code (128,105+11) with an average information throughput of 47.7 Gbps at the target FER of
We present placing via picking (PvP), a method to autonomously collect real-world demonstrations for a family of placing tasks in which obje… (see more)cts must be manipulated to specific, contact-constrained locations. With PvP, we approach the collection of robotic object placement demonstrations by reversing the grasping process and exploiting the inherent symmetry of the pick and place problems. Specifically, we obtain placing demonstrations from a set of grasp sequences of objects initially located at their target placement locations. Our system can collect hundreds of demonstrations in contact-constrained environments without human intervention using two modules: compliant control for grasping and tactile regrasping. We train a policy directly from visual observations through behavioural cloning, using the autonomously-collected demonstrations. By doing so, the policy can generalize to object placement scenarios outside of the training environment without privileged information (e.g., placing a plate picked up from a table). We validate our approach in home robot scenarios that include dishwasher loading and table setting. Our approach yields robotic placing policies that outperform policies trained with kinesthetic teaching, both in terms of success rate and data efficiency, while requiring no human supervision.
We present placing via picking (PvP), a method to autonomously collect real-world demonstrations for a family of placing tasks in which obje… (see more)cts must be manipulated to specific, contact-constrained locations. With PvP, we approach the collection of robotic object placement demonstrations by reversing the grasping process and exploiting the inherent symmetry of the pick and place problems. Specifically, we obtain placing demonstrations from a set of grasp sequences of objects initially located at their target placement locations. Our system can collect hundreds of demonstrations in contact-constrained environments without human intervention using two modules: compliant control for grasping and tactile regrasping. We train a policy directly from visual observations through behavioural cloning, using the autonomously-collected demonstrations. By doing so, the policy can generalize to object placement scenarios outside of the training environment without privileged information (e.g., placing a plate picked up from a table). We validate our approach in home robot scenarios that include dishwasher loading and table setting. Our approach yields robotic placing policies that outperform policies trained with kinesthetic teaching, both in terms of success rate and data efficiency, while requiring no human supervision.
Many real-world scenarios involve solving bi-level optimization problems in which there is an outer discrete optimization problem, and an in… (see more)ner problem involving expensive or black-box computation. This arises in space-time dependent variants of the Traveling Salesman Problem, such as when planning space missions that visit multiple astronomical objects. Planning these missions presents significant challenges due to the constant relative motion of the objects involved. There is an outer combinatorial problem of finding the optimal order to visit the objects and an inner optimization problem that requires finding the optimal departure time and trajectory to travel between each pair of objects. The constant motion of the objects complicates the inner problem, making it computationally expensive. This paper introduces a novel framework utilizing decision diagrams (DDs) and a DD-based branch-and-bound technique, Peel-and-Bound, to achieve exact solutions for such bi-level optimization problems, assuming sufficient inner problem optimizer quality. The framework leverages problem-specific knowledge to expedite search processes and minimize the number of expensive evaluations required. As a case study, we apply this framework to the Asteroid Routing Problem (ARP), a benchmark problem in global trajectory optimization. Experimental results demonstrate the framework's scalability and ability to generate robust heuristic solutions for ARP instances. Many of these solutions are exact, contingent on the assumed quality of the inner problem's optimizer.
Automatic Head and Neck Tumor segmentation and outcome prediction relying on FDG-PET/CT images: Findings from the second edition of the HECKTOR challenge
Fine-tuning language models~(LMs) on human-generated data remains a prevalent practice. However, the performance of such models is often lim… (see more)ited by the quantity and diversity of high-quality human data. In this paper, we explore whether we can go beyond human data on tasks where we have access to scalar feedback, for example, on math problems where one can verify correctness. To do so, we investigate a simple self-training method based on expectation-maximization, which we call ReST