We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
An Attentive Approach for Building Partial Reasoning Agents from Pixels
We study the problem of building reasoning agents that are able to generalize in an effective manner. Towards this goal, we propose an end-t… (see more)o-end approach for building model-based reinforcement learning agents that dynamically focus their reasoning to the relevant aspects of the environment: after automatically identifying the distinct aspects of the environment, these agents dynamically filter out the relevant ones and then pass them to their simulator to perform partial reasoning. Unlike existing approaches, our approach works with pixel-based inputs and it allows for interpreting the focal points of the agent. Our quantitative analyses show that the proposed approach allows for effective generalization in high-dimensional domains with raw observational inputs. We also perform ablation analyses to validate our design choices. Finally, we demonstrate through qualitative analyses that our approach actually allows for building agents that focus their reasoning on the relevant aspects of the environment.
Ultrasound Localization Microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with … (see more)resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature of different tissues. Various deep-learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubbles distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.
2024-09-17
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control (published)
Teacher-Student Curriculum Learning (TSCL) is a curriculum learning framework that draws inspiration from human cultural transmission and le… (see more)arning. It involves a teacher algorithm shaping the learning process of a learner algorithm by exposing it to controlled experiences. Despite its success, understanding the conditions under which TSCL is effective remains challenging. In this paper, we propose a data-centric perspective to analyze the underlying mechanics of the teacher-student interactions in TSCL. We leverage cooperative game theory to describe how the composition of the set of experiences presented by the teacher to the learner, as well as their order, influences the performance of the curriculum that is found by TSCL approaches. To do so, we demonstrate that for every TSCL problem, there exists an equivalent cooperative game, and several key components of the TSCL framework can be reinterpreted using game-theoretic principles. Through experiments covering supervised learning, reinforcement learning, and classical games, we estimate the cooperative values of experiences and use value-proportional curriculum mechanisms to construct curricula, even in cases where TSCL struggles. The framework and experimental setup we present in this work represent a novel foundation for a deeper exploration of TSCL, shedding light on its underlying mechanisms and providing insights into its broader applicability in machine learning.
Recent advances in machine learning algorithms have unlocked new insights in observational astronomy by allowing astronomers to probe new fr… (see more)ontiers. In this article, we present a methodology to disentangle the intrinsic X-ray spectrum of galaxy clusters from the instrumental response function. Employing state-of-the-art modeling software and data mining techniques of the Chandra data archive, we construct a set of 100,000 mock Chandra spectra. We train a recurrent inference machine (RIM) to take in the instrumental response and mock observation and output the intrinsic X-ray spectrum. The RIM can recover the mock intrinsic spectrum below the 1-
A high-throughput phenotypic screen combined with an ultra-large-scale deep learning-based virtual screening reveals novel scaffolds of antibacterial compounds