Delivered in partnership with Indspire, this tailored career pathway is designed to empower Indigenous talent to learn, develop, and lead the evolution of AI. Applications for the 2025 program are open until January 31st.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Determinants of technology adoption and continued use among cognitively impaired older adults: a qualitative study
Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma
BACKGROUND AND PURPOSE: Imaging assessment of an immunotherapy response in glioblastoma is challenging due to overlap in the appearance of t… (see more)reatment-related changes with tumor progression. Our purpose was to determine whether MR imaging radiomics-based machine learning can predict progression-free survival and overall survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy. MATERIALS AND METHODS: Post hoc analysis was performed of a multicenter trial on the efficacy of durvalumab in glioblastoma (n = 113). Radiomics tumor features on pretreatment and first on-treatment time point MR imaging were extracted. The random survival forest algorithm was applied to clinical and radiomics features from pretreatment and first on-treatment MR imaging from a subset of trial sites (n = 60–74) to train a model to predict long overall survival and progression-free survival and was tested externally on data from the remaining sites (n = 29–43). Model performance was assessed using the concordance index and dynamic area under the curve from different time points. RESULTS: The mean age was 55.2 (SD, 11.5) years, and 69% of patients were male. Pretreatment MR imaging features had a poor predictive value for overall survival and progression-free survival (concordance index = 0.472–0.524). First on-treatment MR imaging features had high predictive value for overall survival (concordance index = 0.692–0.750) and progression-free survival (concordance index = 0.680–0.715). CONCLUSIONS: A radiomics-based machine learning model from first on-treatment MR imaging predicts survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy.
Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma
BACKGROUND AND PURPOSE: Imaging assessment of an immunotherapy response in glioblastoma is challenging due to overlap in the appearance of t… (see more)reatment-related changes with tumor progression. Our purpose was to determine whether MR imaging radiomics-based machine learning can predict progression-free survival and overall survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy. MATERIALS AND METHODS: Post hoc analysis was performed of a multicenter trial on the efficacy of durvalumab in glioblastoma (n = 113). Radiomics tumor features on pretreatment and first on-treatment time point MR imaging were extracted. The random survival forest algorithm was applied to clinical and radiomics features from pretreatment and first on-treatment MR imaging from a subset of trial sites (n = 60–74) to train a model to predict long overall survival and progression-free survival and was tested externally on data from the remaining sites (n = 29–43). Model performance was assessed using the concordance index and dynamic area under the curve from different time points. RESULTS: The mean age was 55.2 (SD, 11.5) years, and 69% of patients were male. Pretreatment MR imaging features had a poor predictive value for overall survival and progression-free survival (concordance index = 0.472–0.524). First on-treatment MR imaging features had high predictive value for overall survival (concordance index = 0.692–0.750) and progression-free survival (concordance index = 0.680–0.715). CONCLUSIONS: A radiomics-based machine learning model from first on-treatment MR imaging predicts survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy.
We provide a brief review of the common assumptions about biological learning with findings from experimental neuroscience and contrast them… (see more) with the efficiency of gradient-based learning in recurrent neural networks. The key issues discussed in this review include: synaptic plasticity, neural circuits, theory-experiment divide, and objective functions. We conclude with recommendations for both theoretical and experimental neuroscientists when designing new studies that could help bring clarity to these issues.
2022-04-27
Neurons, Behavior, Data analysis, and Theory (published)
This paper summarizes the content of the 20 tutorials that have been given at The Web Conference 2022: 85% of these tutorials are lecture st… (see more)yle, and 15% of these are hands on.
Offline evaluation of information retrieval and recommendation has traditionally focused on distilling the quality of a ranking into a scala… (see more)r metric such as average precision or normalized discounted cumulative gain. We can use this metric to compare the performance of multiple systems for the same request. Although evaluation metrics provide a convenient summary of system performance, they also collapse subtle differences across users into a single number and can carry assumptions about user behavior and utility not supported across retrieval scenarios. We propose recall-paired preference (RPP), a metric-free evaluation method based on directly computing a preference between ranked lists. RPP simulates multiple user subpopulations per query and compares systems across these pseudo-populations. Our results across multiple search and recommendation tasks demonstrate that RPP substantially improves discriminative power while correlating well with existing metrics and being equally robust to incomplete data.
Taxonomy is a fundamental type of knowledge graph for a wide range of web applications like searching and recommendation systems. To keep a … (see more)taxonomy automatically updated with the latest concepts, the taxonomy completion task matches a pair of proper hypernym and hyponym in the original taxonomy with the new concept as its parent and child. Previous solutions utilize term embeddings as input and only evaluate the parent-child relations between the new concept and the hypernym-hyponym pair. Such methods ignore the important sibling relations, and are not applicable in reality since term embeddings are not available for the latest concepts. They also suffer from the relational noise of the “pseudo-leaf” node, which is a null node acting as a node’s hyponym to enable the new concept to be a leaf node. To tackle the above drawbacks, we propose the Quadruple Evaluation Network (QEN), a novel taxonomy completion framework that utilizes easily accessible term descriptions as input, and applies pretrained language model and code attention for accurate inference while reducing online computation. QEN evaluates both parent-child and sibling relations to both enhance the accuracy and reduce the noise brought by pseudo-leaf. Extensive experiments on three real-world datasets in different domains with different sizes and term description sources prove the effectiveness and robustness of QEN on overall performance and especially the performance for adding non-leaf nodes, which largely surpasses previous methods and achieves the new state-of-the-art of the task.1
Taxonomy is a fundamental type of knowledge graph for a wide range of web applications like searching and recommendation systems. To keep a … (see more)taxonomy automatically updated with the latest concepts, the taxonomy completion task matches a pair of proper hypernym and hyponym in the original taxonomy with the new concept as its parent and child. Previous solutions utilize term embeddings as input and only evaluate the parent-child relations between the new concept and the hypernym-hyponym pair. Such methods ignore the important sibling relations, and are not applicable in reality since term embeddings are not available for the latest concepts. They also suffer from the relational noise of the “pseudo-leaf” node, which is a null node acting as a node’s hyponym to enable the new concept to be a leaf node. To tackle the above drawbacks, we propose the Quadruple Evaluation Network (QEN), a novel taxonomy completion framework that utilizes easily accessible term descriptions as input, and applies pretrained language model and code attention for accurate inference while reducing online computation. QEN evaluates both parent-child and sibling relations to both enhance the accuracy and reduce the noise brought by pseudo-leaf. Extensive experiments on three real-world datasets in different domains with different sizes and term description sources prove the effectiveness and robustness of QEN on overall performance and especially the performance for adding non-leaf nodes, which largely surpasses previous methods and achieves the new state-of-the-art of the task.1
We empirically show that classic ideas from two-time scale stochastic approximation \citep{borkar1997stochastic} can be combined with sequen… (see more)tial iterative best response (SIBR) to solve complex cooperative multi-agent reinforcement learning (MARL) problems. We first start with giving a multi-agent estimation problem as a motivating example where SIBR converges while parallel iterative best response (PIBR) does not. Then we present a general implementation of staged multi-agent RL algorithms based on SIBR and multi-time scale stochastic approximation, and show that our new methods which we call Staged Independent Proximal Policy Optimization (SIPPO) and Staged Independent Q-learning (SIQL) outperform state-of-the-art independent learning on almost all the tasks in the epymarl \citep{papoudakis2020benchmarking} benchmark. This can be seen as a first step towards more decentralized MARL methods based on SIBR and multi-time scale learning.