We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Rejecting Hallucinated State Targets during Planning
A growing body of computational studies shows that simple machine learning agents converge to cooperative behaviors in social dilemmas, such… (see more) as collusive price-setting in oligopoly markets, raising questions about what drives this outcome. In this work, we provide theoretical foundations for this phenomenon in the context of self-play multi-agent Q-learners in the iterated prisoner’s dilemma. We characterize broad conditions under which such agents provably learn the cooperative Pavlov (win-stay, lose-shift) policy rather than the Pareto-dominated “always defect” policy. We validate our theoretical results through additional experiments, demonstrating their robustness across a broader class of deep learning algorithms.
Koopman operator theory provides a framework for nonlinear dynamical system analysis and time-series forecasting by mapping dynamics to a sp… (see more)ace of real-valued measurement functions, enabling a linear operator representation. Despite the advantage of linearity, the operator is generally infinite-dimensional. Therefore, the objective is to learn measurement functions that yield a tractable finite-dimensional Koopman operator approximation. In this work, we establish a connection between Koopman operator approximation and linear Recurrent Neural Networks (RNNs), which have recently demonstrated remarkable success in sequence modeling. We show that by considering an extended state consisting of lagged observations, we can establish an equivalence between a structured Koopman operator and linear RNN updates. Building on this connection, we present SKOLR, which integrates a learnable spectral decomposition of the input signal with a multilayer perceptron (MLP) as the measurement functions and implements a structured Koopman operator via a highly parallel linear RNN stack. Numerical experiments on various forecasting benchmarks and dynamical systems show that this streamlined, Koopman-theory-based design delivers exceptional performance. Our code is available at: https://github.com/networkslab/SKOLR.