Inertia-Based Indices to Determine the Number of Clusters in K-Means: An Experimental Evaluation
Andrei Rykov
Renato Cordeiro De Amorim
Boris Mirkin
This paper gives an experimentally supported review and comparison of several indices based on the conventional K-means inertia criterion fo… (see more)r determining the number of clusters,
Inertia-Based Indices to Determine the Number of Clusters in K-Means: An Experimental Evaluation
Andrei Rykov
Renato Cordeiro De Amorim
Boris Mirkin
This paper gives an experimentally supported review and comparison of several indices based on the conventional K-means inertia criterion fo… (see more)r determining the number of clusters,
Inertia-Based Indices to Determine the Number of Clusters in K-Means: An Experimental Evaluation
Andrei Rykov
Renato Cordeiro De Amorim
Boris Mirkin
This paper gives an experimentally supported review and comparison of several indices based on the conventional K-means inertia criterion fo… (see more)r determining the number of clusters,
Inertia-Based Indices to Determine the Number of Clusters in K-Means: An Experimental Evaluation
Andrei Rykov
Renato Cordeiro De Amorim
Boris Mirkin
This paper gives an experimentally supported review and comparison of several indices based on the conventional K-means inertia criterion fo… (see more)r determining the number of clusters,
Information Complexity of Stochastic Convex Optimization: Applications to Generalization, Memorization, and Tracing
Idan Attias
MAHDI HAGHIFAM
Roi Livni
Daniel M. Roy
In this work, we investigate the interplay between memorization and learning in the context of stochastic convex optimization (SCO)… (see more). We define memorization via the information a learning algorithm reveals about its training data points. We then quantify this information using the framework of conditional mutual information (CMI) proposed by Steinke and Zakynthinou (2020). Our main result is a precise characterization of the tradeoff between the accuracy of a learning algorithm and its CMI, answering an open question posed by Livni (2023). We show that, in the
Interacting with a Visuotactile Countertop
M. Jenkin
Francois Hogan
Jean-François Tremblay
Bobak H. Baghi
INViTE: INterpret and Control Vision-Language Models with Text Explanations
Haozhe Chen
Junfeng Yang
Carl Vondrick
Chengzhi Mao
Columbia University
M. University
Large-scale pre-trained vision foundation models, such as CLIP, have become de facto backbones for various vision tasks. However, due to the… (see more)ir black-box nature, understanding the underlying rules behind these models’ predictions and controlling model behaviors have remained open challenges. We present INViTE: a framework for INterpreting Vision Transformer’s latent tokens with Text Explanations. Given a latent token, INViTE retains its semantic information to the final layer using transformer’s local operations and retrieves the closest text for explanation. INViTE enables understanding of model visual reasoning procedure without needing additional model training or data collection. Based on the obtained interpretations, INViTE allows for model editing that controls model reasoning behaviors and improves model robustness against biases and spurious correlations. Our code is available at https://github.com/tonychenxyz/vit-interpret.
ÌròyìnSpeech: A multi-purpose Yorùbá Speech Corpus
Tolúlope' Ògúnremí
Kọ́lá Túbọ̀sún
Aremu Anuoluwapo
Iroro Orife
iWISDM: Assessing instruction following in multimodal models at scale
Xiaoxuan Lei
Lucas Gomez
Hao Yuan Bai
The ability to perform complex tasks from detailed instructions is a key to the remarkable achievements of our species. As humans, we are no… (see more)t only capable of performing a wide variety of tasks but also very complex ones that may entail hundreds or thousands of steps to complete. Large language models and their more recent multimodal counterparts that integrate textual and visual inputs have achieved unprecedented success in performing complex tasks. Yet, most existing benchmarks are largely confined to single-modality inputs — either text or vision — and thus, narrowing the scope of multimodal integration assessments, particularly for instruction-following in multimodal contexts. To bridge this gap, we introduce the instructed-Virtual VISual Decision Making (iWISDM) environment engineered to generate a limitless array of vision-language tasks of varying complexity. Using iWISDM, we compiled three distinct benchmarks of instruction following visual tasks across varying complexity levels and evaluated several newly developed multimodal models on these benchmarks. Our findings establish iWISDM as a robust benchmark for assessing the instructional adherence of both existing and emergent multimodal models and highlight a large gap in these models’ ability to precisely follow instructions.
Joint Multimodal Transformer for Dimensional Emotional Recognition in the Wild
Paul Waligora
Muhammad Osama Zeeshan
Muhammad Haseeb Aslam
Soufiane Belharbi
Alessandro Lameiras Koerich
Simon Bacon
Eric Granger
Audiovisual emotion recognition (ER) in videos has immense potential over unimodal performance. It effectively leverages the inter-and intra… (see more)-modal dependencies between visual and auditory modalities. This work proposes a novel audio-visual emotion recognition system utilizing a joint multimodal transformer architecture with key-based cross-attention. This framework aims to exploit the complementary nature of audio and visual cues (facial expressions and vocal patterns) in videos, leading to superior performance compared to solely relying on a single modality. The proposed model leverages separate backbones for capturing intra-modal temporal dependencies within each modality (audio and visual). Subse-quently, a joint multimodal transformer architecture integrates the individual modality embeddings, enabling the model to effectively capture inter-modal (between audio and visual) and intra-modal (within each modality) relationships. Extensive evaluations on the challenging Affwild2 dataset demonstrate that the proposed model significantly outperforms baseline and state-of-the-art methods in ER tasks.
Do Large Language Models Know How Much They Know?
Gabriele Prato
Jerry Huang
Prasanna Parthasarathi
Shagun Sodhani
Large Language Models (LLMs) have emerged as highly capable systems and are increasingly being integrated into various uses. Nevertheless, t… (see more)he rapid advancement in their deployment trails a comprehensive understanding of their internal mechanisms, as well as a delineation of their capabilities and limitations. A desired characteristic of an intelligent system is its ability to recognize the scope of its own knowledge. To investigate whether LLMs embody this attribute, we develop a benchmark that challenges these models to enumerate all information they possess on specific topics. This benchmark assesses whether the models recall excessive, insufficient, or the precise amount of required information, thereby indicating their awareness of how much they know about the given topic. Our findings reveal that the emergence of this property varies across different architectures and manifests at diverse rates. However, with sufficient scaling, all tested models are ultimately capable of performing this task. The insights gained from this research advance our understanding of LLMs, shedding light on their operational capabilities and contributing to the ongoing exploration of their intricate dynamics.
Do Large Language Models Know How Much They Know?
Gabriele Prato
Jerry Huang
Prasanna Parthasarathi
Shagun Sodhani