Portrait of Philippe Formont

Philippe Formont

PhD - École de technologie suprérieure
Supervisor
Research Topics
Graph Neural Networks
Molecular Modeling
Representation Learning

Publications

A Strong Baseline for Molecular Few-Shot Learning
Hugo Jeannin
Ismail Ben Ayed
Few-shot learning has recently attracted significant interest in drug discovery, with a recent, fast-growing literature mostly involving con… (see more)voluted meta-learning strategies. We revisit the more straightforward fine-tuning approach for molecular data, and propose a regularized quadratic-probe loss based on the the Mahalanobis distance. We design a dedicated block-coordinate descent optimizer, which avoid the degenerate solutions of our loss. Interestingly, our simple fine-tuning approach achieves highly competitive performances in comparison to state-of-the-art methods, while being applicable to black-box settings and removing the need for specific episodic pre-training strategies. Furthermore, we introduce a new benchmark to assess the robustness of the competing methods to domain shifts. In this setting, our fine-tuning baseline obtains consistently better results than meta-learning methods.
Membership Inference Risks in Quantized Models: A Theoretical and Empirical Study
Eric Aubinais
Elisabeth Gassiat
Quantizing machine learning models has demonstrated its effectiveness in lowering memory and inference costs while maintaining performance l… (see more)evels comparable to the original models. In this work, we investigate the impact of quantization procedures on the privacy of data-driven models, specifically focusing on their vulnerability to membership inference attacks. We derive an asymptotic theoretical analysis of Membership Inference Security (MIS), characterizing the privacy implications of quantized algorithm weights against the most powerful (and possibly unknown) attacks. Building on these theoretical insights, we propose a novel methodology to empirically assess and rank the privacy levels of various quantization procedures. Using synthetic datasets, we demonstrate the effectiveness of our approach in assessing the MIS of different quantizers. Furthermore, we explore the trade-off between privacy and performance using real-world data and models in the context of molecular modeling.
Membership Inference Risks in Quantized Models: A Theoretical and Empirical Study
Eric Aubinais
Elisabeth Gassiat
Quantizing machine learning models has demonstrated its effectiveness in lowering memory and inference costs while maintaining performance l… (see more)evels comparable to the original models. In this work, we investigate the impact of quantization procedures on the privacy of data-driven models, specifically focusing on their vulnerability to membership inference attacks. We derive an asymptotic theoretical analysis of Membership Inference Security (MIS), characterizing the privacy implications of quantized algorithm weights against the most powerful (and possibly unknown) attacks. Building on these theoretical insights, we propose a novel methodology to empirically assess and rank the privacy levels of various quantization procedures. Using synthetic datasets, we demonstrate the effectiveness of our approach in assessing the MIS of different quantizers. Furthermore, we explore the trade-off between privacy and performance using real-world data and models in the context of molecular modeling.
When is an Embedding Model More Promising than Another?
When is an Embedding Model More Promising than Another?
Embedders play a central role in machine learning, projecting any object into numerical representations that can, in turn, be leveraged to p… (see more)erform various downstream tasks. The evaluation of embedding models typically depends on domain-specific empirical approaches utilizing downstream tasks, primarily because of the lack of a standardized framework for comparison. However, acquiring adequately large and representative datasets for conducting these assessments is not always viable and can prove to be prohibitively expensive and time-consuming. In this paper, we present a unified approach to evaluate embedders. First, we establish theoretical foundations for comparing embedding models, drawing upon the concepts of sufficiency and informativeness. We then leverage these concepts to devise a tractable comparison criterion (information sufficiency), leading to a task-agnostic and self-supervised ranking procedure. We demonstrate experimentally that our approach aligns closely with the capability of embedding models to facilitate various downstream tasks in both natural language processing and molecular biology. This effectively offers practitioners a valuable tool for prioritizing model trials.
Is Meta-training Really Necessary for Molecular Few-Shot Learning ?
Hugo Jeannin
Ismail Ben Ayed
Few-shot learning has recently attracted significant interest in drug discovery, with a recent, fast-growing literature mostly involving con… (see more)voluted meta-learning strategies. We revisit the more straightforward fine-tuning approach for molecular data, and propose a regularized quadratic-probe loss based on the the Mahalanobis distance. We design a dedicated block-coordinate descent optimizer, which avoid the degenerate solutions of our loss. Interestingly, our simple fine-tuning approach achieves highly competitive performances in comparison to state-of-the-art methods, while being applicable to black-box settings and removing the need for specific episodic pre-training strategies. Furthermore, we introduce a new benchmark to assess the robustness of the competing methods to domain shifts. In this setting, our fine-tuning baseline obtains consistently better results than meta-learning methods.
COSMIC: Mutual Information for Task-Agnostic Summarization Evaluation
Assessing the quality of summarizers poses significant challenges. In response, we propose a novel task-oriented evaluation approach that as… (see more)sesses summarizers based on their capacity to produce summaries that are useful for downstream tasks, while preserving task outcomes. We theoretically establish a direct relationship between the resulting error probability of these tasks and the mutual information between source texts and generated summaries. We introduce