GPAI Report & Policy Guide: Towards Substantive Equality in AI
Join us at Mila on November 26 for the launch of the report and policy guide that outlines actionable recommendations for building inclusive AI ecosystems.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Evolution of cell size control is canalized towards adders or sizers by cell cycle structure and selective pressures
Cell size is controlled to be within a specific range to support physiological function. To control their size, cells use diverse mechanisms… (see more) ranging from ‘sizers’, in which differences in cell size are compensated for in a single cell division cycle, to ‘adders’, in which a constant amount of cell growth occurs in each cell cycle. This diversity raises the question why a particular cell would implement one rather than another mechanism? To address this question, we performed a series of simulations evolving cell size control networks. The size control mechanism that evolved was influenced by both cell cycle structure and specific selection pressures. Moreover, evolved networks recapitulated known size control properties of naturally occurring networks. If the mechanism is based on a G1 size control and an S/G2/M timer, as found for budding yeast and some human cells, adders likely evolve. But, if the G1 phase is significantly longer than the S/G2/M phase, as is often the case in mammalian cells in vivo, sizers become more likely. Sizers also evolve when the cell cycle structure is inverted so that G1 is a timer, while S/G2/M performs size control, as is the case for the fission yeast S. pombe. For some size control networks, cell size consistently decreases in each cycle until a burst of cell cycle inhibitor drives an extended G1 phase much like the cell division cycle of the green algae Chlamydomonas. That these size control networks evolved such self-organized criticality shows how the evolution of complex systems can drive the emergence of critical processes.
The practice of applying several local updates before aggregation across clients has been empirically shown to be a successful approach to o… (see more)vercoming the communication bottleneck in Federated Learning (FL). Such methods are usually implemented by having clients perform one or more epochs of local training per round while randomly reshuffling their finite dataset in each epoch. Data imbalance, where clients have different numbers of local training samples, is ubiquitous in FL applications, resulting in different clients performing different numbers of local updates in each round. In this work, we propose a general recipe, FedShuffle, that better utilizes the local updates in FL, especially in this regime encompassing random reshuffling and heterogeneity. FedShuffle is the first local update method with theoretical convergence guarantees that incorporates random reshuffling, data imbalance, and client sampling — features that are essential in large-scale cross-device FL. We present a comprehensive theoretical analysis of FedShuffle and show, both theoretically and empirically, that it does not suffer from the objective function mismatch that is present in FL methods that assume homogeneous updates in heterogeneous FL setups, such as FedAvg (McMahan et al., 2017). In addition, by combining the ingredients above, FedShuffle improves upon FedNova (Wang et al., 2020), which was previously proposed to solve this mismatch. Similar to Mime (Karimireddy et al., 2020), we show that FedShuffle with momentum variance reduction (Cutkosky & Orabona, 2019) improves upon non-local methods under a Hessian similarity assumption.
The 5-year longitudinal diagnostic profile and health services utilization of patients treated with electroconvulsive therapy in Quebec: a population-based study
Accurate and automatic segmentation of intervertebral discs from medical images is a critical task for the assessment of spine-related disea… (see more)ses such as osteoporosis, vertebral fractures, and intervertebral disc herniation. To date, various approaches have been developed in the literature which routinely relies on detecting the discs as the primary step. A disadvantage of many cohort studies is that the localization algorithm also yields false-positive detections. In this study, we aim to alleviate this problem by proposing a novel U-Net-based structure to predict a set of candidates for intervertebral disc locations. In our design, we integrate the image shape information (image gradients) to encourage the model to learn rich and generic geometrical information. This additional signal guides the model to selectively emphasize the contextual representation and suppress the less discriminative features. On the post-processing side, to further decrease the false positive rate, we propose a permutation invariant 'look once' model, which accelerates the candidate recovery procedure. In comparison with previous studies, our proposed approach does not need to perform the selection in an iterative fashion. The proposed method was evaluated on the spine generic public multi-center dataset and demonstrated superior performance compared to previous work. We have provided the implementation code in https://github.com/rezazad68/intervertebral-lookonce
Video games represent a substantial and increasing share of the software market. However, their development is particularly challenging as i… (see more)t requires multi-faceted knowledge, which is not consolidated in computer science education yet. This article aims at defining a catalog of bad smells related to video game development. To achieve this goal, we mined discussions on general-purpose and video game-specific forums. After querying such a forum, we adopted an open coding strategy on a statistically significant sample of 572 discussions, stratified over different forums. As a result, we obtained a catalog of 28 bad smells, organized into five categories, covering problems related to game design and logic, physics, animation, rendering, or multiplayer. Then, we assessed the perceived relevance of such bad smells by surveying 76 game development professionals. The survey respondents agreed with the identified bad smells but also provided us with further insights about the discussed smells. Upon reporting results, we discuss bad smell examples, their consequences, as well as possible mitigation/fixing strategies and trade-offs to be pursued by developers. The catalog can be used not only as a guideline for developers and educators but also can pave the way toward better automated tool support for video game developers.
2022-09-15
ACM Transactions on Software Engineering and Methodology (published)