An enhanced wideband tracking method for characteristic modes
Chao Huang
Chenjiang Guo
Xia Ma
Yi Yuan
An enhanced wideband tracking method for characteristic modes (CMs) is investigated in this paper. The method consists of three stages, and … (see more)its core tracking stage (CTS) is based on a classical eigenvector correlation-based algorithm. To decrease the tracking time and eliminate the crossing avoidance (CRA), we append a commonly used eigenvalue filter (EF) as the preprocessing stage and a novel postprocessing stage to the CTS. The proposed postprocessing stage can identify all CRA mode pairs by analyzing their trajectory and correlation characteristics. Subsequently, it can predict corresponding CRA frequencies and correct problematic qualities rapidly. Considering potential variations in eigenvector numbers at consecutive frequency samples caused by the EF, a new execution condition for the adaptive frequency adjustment in the CTS is introduced. Finally, CMs of a conductor plate and a fractal structure are investigated to demonstrate the performance of the proposed method, and the obtained results are discussed.
Leveraging Function Space Aggregation for Federated Learning at Scale
Nikita Dhawan
Nicole Elyse Mitchell
Zachary Charles
Zachary Garrett
The federated learning paradigm has motivated the development of methods for aggregating multiple client updates into a global server model,… (see more) without sharing client data. Many federated learning algorithms, including the canonical Federated Averaging (FedAvg), take a direct (possibly weighted) average of the client parameter updates, motivated by results in distributed optimization. In this work, we adopt a function space perspective and propose a new algorithm, FedFish, that aggregates local approximations to the functions learned by clients, using an estimate based on their Fisher information. We evaluate FedFish on realistic, large-scale cross-device benchmarks. While the performance of FedAvg can suffer as client models drift further apart, we demonstrate that FedFish is more robust to longer local training. Our evaluation across several settings in image and language benchmarks shows that FedFish outperforms FedAvg as local training epochs increase. Further, FedFish results in global networks that are more amenable to efficient personalization via local fine-tuning on the same or shifted data distributions. For instance, federated pretraining on the C4 dataset, followed by few-shot personalization on Stack Overflow, results in a 7% improvement in next-token prediction by FedFish over FedAvg.
Metrics reloaded: Pitfalls and recommendations for image analysis validation
Lena Maier-Hein
Annika Reinke
Evangelia Christodoulou
Ben Glocker
PATRICK GODAU
Fabian Isensee
Jens Kleesiek
Michal Kozubek
Mauricio Reyes
MICHAEL A. RIEGLER
Manuel Wiesenfarth
Michael Baumgartner
Matthias Eisenmann
DOREEN HECKMANN-NÖTZEL
A. EMRE KAVUR
TIM RÄDSCH
Minu Dietlinde Tizabi
LAURA ACION
Michela Antonelli
Spyridon Bakas
Peter Bankhead
Allison Benis
M. Jorge Cardoso
Veronika Cheplygina
BETH A. CIMINI
Gary S. Collins
Keyvan Farahani
Bram van Ginneken
Daniel A. Hashimoto
Michael M. Hoffman
Merel Huisman
Pierre Jannin
CHARLES E. KAHN
ALEXANDROS KARARGYRIS
Alan Karthikesalingam
H. Kenngott
Annette Kopp-Schneider
Anna Kreshuk
Tahsin Kurc
Bennett Landman
GEERT LITJENS
Amin Madani
Klaus Maier-Hein
Anne L. Martel
Peter Mattson
ERIK MEIJERING
Bjoern Menze
David Moher
KAREL G.M. MOONS
Henning Müller
Felix Nickel
Brennan Nichyporuk
Jens Petersen
NASIR RAJPOOT
Nicola Rieke
Julio Saez-Rodriguez
Clarisa S'anchez Guti'errez
SHRAVYA SHETTY
M. Smeden
Carole H. Sudre
Ronald M. Summers
Abdel Aziz Taha
Sotirios A. Tsaftaris
Ben Van Calster
Gael Varoquaux
PAUL F. JÄGER
Nearest Neighbour Score Estimators for Diffusion Generative Models
Matthew Niedoba
Dylan Green
Saeid Naderiparizi
Vasileios Lioutas
Jonathan Wilder Lavington
Xiaoxuan Liang
Yunpeng Liu
Ke Zhang
Setareh Dabiri
Adam Ścibior
Berend Zwartsenberg
Frank Wood
Understanding metric-related pitfalls in image analysis validation
Annika Reinke
Minu Dietlinde Tizabi
Michael Baumgartner
Matthias Eisenmann
DOREEN HECKMANN-NÖTZEL
A. EMRE KAVUR
TIM RÄDSCH
Carole H. Sudre
LAURA ACION
Michela Antonelli
Spyridon Bakas
Allison Benis
Arriel Benis
Matthew Blaschko
FLORIAN BUETTNER
M. Jorge Cardoso
Veronika Cheplygina
JIANXU CHEN
Evangelia Christodoulou … (see 59 more)
BETH A. CIMINI
Keyvan Farahani
LUCIANA FERRER
Gary S. Collins
Adrian Galdran
Bram van Ginneken
Ben Glocker
PATRICK GODAU
Daniel A. Hashimoto
Michael M. Hoffman
Robert Cary Haase
Merel Huisman
Fabian Isensee
Pierre Jannin
CHARLES E. KAHN
DAGMAR KAINMUELLER
BERNHARD KAINZ
ALEXANDROS KARARGYRIS
Jens Kleesiek
Florian Kofler
THIJS KOOI
Annette Kopp-Schneider
Alan Karthikesalingam
H. Kenngott
Michal Kozubek
Anna Kreshuk
Tahsin Kurc
Bennett A. Landman
GEERT LITJENS
Amin Madani
Klaus Maier-Hein
Anne L. Martel
ERIK MEIJERING
Bjoern Menze
KAREL G.M. MOONS
Henning Müller
Brennan Nichyporuk
Peter Mattson
Felix Nickel
Jens Petersen
SUSANNE M. RAFELSKI
NASIR RAJPOOT
Mauricio Reyes
MICHAEL A. RIEGLER
Nicola Rieke
Julio Saez-Rodriguez
Clara I. Sánchez
SHRAVYA SHETTY
Ronald M. Summers
Abdel Aziz Taha
ALEKSEI TIULPIN
Sotirios A. Tsaftaris
Ben Van Calster
Gael Varoquaux
M. Smeden
ZIV R. YANIV
PAUL F. JÄGER
Lena Maier-Hein
Manuel Wiesenfarth
The Leukemoid Reaction in Severe Alcoholic Hepatitis: A Case Report
Sachin Agrawal
Sunil Kumar
Sourya Acharya
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
Sarthak Mittal
Pablo Lemos
Cheng-Hao Liu
Marcin Sendera
Nikolay Malkin
Alexander Tong
Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-… (see more)body systems, is a foundational problem in science. In this paper, we propose Iterated Denoising Energy Matching (iDEM), an iterative algorithm that uses a novel stochastic score matching objective leveraging solely the energy function and its gradient -- and no data samples -- to train a diffusion-based sampler. Specifically, iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our stochastic matching objective to further improve the sampler. iDEM is scalable to high dimensions as the inner matching objective, is simulation-free, and requires no MCMC samples. Moreover, by leveraging the fast mode mixing behavior of diffusion, iDEM smooths out the energy landscape enabling efficient exploration and learning of an amortized sampler. We evaluate iDEM on a suite of tasks ranging from standard synthetic energy functions to invariant
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
Sarthak Mittal
Pablo Lemos
Cheng-Hao Liu
Marcin Sendera
Nikolay Malkin
Alexander Tong
Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-… (see more)body systems, is a foundational problem in science. In this paper, we propose Iterated Denoising Energy Matching (iDEM), an iterative algorithm that uses a novel stochastic score matching objective leveraging solely the energy function and its gradient -- and no data samples -- to train a diffusion-based sampler. Specifically, iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our stochastic matching objective to further improve the sampler. iDEM is scalable to high dimensions as the inner matching objective, is simulation-free, and requires no MCMC samples. Moreover, by leveraging the fast mode mixing behavior of diffusion, iDEM smooths out the energy landscape enabling efficient exploration and learning of an amortized sampler. We evaluate iDEM on a suite of tasks ranging from standard synthetic energy functions to invariant
Reinforcement Learning for Blind Stair Climbing with Legged and Wheeled-Legged Robots
Simon Chamorro
Victor Klemm
Miguel de La Iglesia Valls
Roland Siegwart
In recent years, legged and wheeled-legged robots have gained prominence for tasks in environments predominantly created for humans across v… (see more)arious domains. One significant challenge faced by many of these robots is their limited capability to navigate stairs, which hampers their functionality in multi-story environments. This study proposes a method aimed at addressing this limitation, employing reinforcement learning to develop a versatile controller applicable to a wide range of robots. In contrast to the conventional velocity-based controllers, our approach builds upon a position-based formulation of the RL task, which we show to be vital for stair climbing. Furthermore, the methodology leverages an asymmetric actor-critic structure, enabling the utilization of privileged information from simulated environments during training while eliminating the reliance on exteroceptive sensors during real-world deployment. Another key feature of the proposed approach is the incorporation of a boolean observation within the controller, enabling the activation or deactivation of a stair-climbing mode. We present our results on different quadrupeds and bipedal robots in simulation and showcase how our method allows the balancing robot Ascento to climb 15cm stairs in the real world, a task that was previously impossible for this robot.
Reinforcement Learning for Blind Stair Climbing with Legged and Wheeled-Legged Robots
Simon Chamorro
Victor Klemm
Miguel de La Iglesia Valls
Roland Siegwart
In recent years, legged and wheeled-legged robots have gained prominence for tasks in environments predominantly created for humans across v… (see more)arious domains. One significant challenge faced by many of these robots is their limited capability to navigate stairs, which hampers their functionality in multi-story environments. This study proposes a method aimed at addressing this limitation, employing reinforcement learning to develop a versatile controller applicable to a wide range of robots. In contrast to the conventional velocity-based controllers, our approach builds upon a position-based formulation of the RL task, which we show to be vital for stair climbing. Furthermore, the methodology leverages an asymmetric actor-critic structure, enabling the utilization of privileged information from simulated environments during training while eliminating the reliance on exteroceptive sensors during real-world deployment. Another key feature of the proposed approach is the incorporation of a boolean observation within the controller, enabling the activation or deactivation of a stair-climbing mode. We present our results on different quadrupeds and bipedal robots in simulation and showcase how our method allows the balancing robot Ascento to climb 15cm stairs in the real world, a task that was previously impossible for this robot.
On the Privacy of Selection Mechanisms with Gaussian Noise
Jonathan Lebensold
Borja Balle
V-STaR: Training Verifiers for Self-Taught Reasoners
Arian Hosseini
Xingdi Yuan
Nikolay Malkin
Common self-improvement approaches for large language models (LLMs), such as STaR, iteratively fine-tune LLMs on self-generated solutions to… (see more) improve their problem-solving ability. However, these approaches discard the large amounts of incorrect solutions generated during this process, potentially neglecting valuable information in such solutions. To address this shortcoming, we propose V-STaR that utilizes both the correct and incorrect solutions generated during the self-improvement process to train a verifier using DPO that judges correctness of model-generated solutions. This verifier is used at inference time to select one solution among many candidate solutions. Running V-STaR for multiple iterations results in progressively better reasoners and verifiers, delivering a 4% to 17% test accuracy improvement over existing self-improvement and verification approaches on common code generation and math reasoning benchmarks with LLaMA2 models.