Delivered in partnership with Indspire, this tailored career pathway is designed to empower Indigenous talent to learn, develop, and lead the evolution of AI. Applications for the 2025 program are open until January 31st.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Robustness assessment of hyperspectral image CNNs using metamorphic testing
In this letter, we review the question of which action space is best suited for controlling a real biped robot in combination with Sim2Real … (see more)training. Position control has been popular as it has been shown to be more sample efficient and intuitive to combine with other planning algorithms. However, for position control, gain tuning is required to achieve the best possible policy performance. We show that, instead, using a torque-based action space enables task-and-robot agnostic learning with less parameter tuning and mitigates the sim-to-reality gap by taking advantage of torque control's inherent compliance. Also, we accelerate the torque-based-policy training process by pre-training the policy to remain upright by compensating for gravity. The letter showcases the first successful sim-to-real transfer of a torque-based deep reinforcement learning policy on a real human-sized biped robot.
In this article, we present an analysis of unsupervised domain adaptation with a series of theoretical and algorithmic results. We derive a … (see more)novel Rényi-
2023-10-01
IEEE Transactions on Knowledge and Data Engineering (published)
We consider the detection of faults in robotic manipulators, with particular emphasis on faults that have not been observed or identified in… (see more) advance, which naturally includes those that occur very infrequently. Recent studies indicate that the reward function obtained through Inverse Reinforcement Learning (IRL) can help detect anomalies caused by faults in a control system (i.e. fault detection). Current IRL methods for fault detection, however, either use a linear reward representation or require extensive sampling from the environment to estimate the policy, rendering them inappropriate for safety-critical situations where sampling of failure observations via fault injection can be expensive and dangerous. To address this issue, this paper proposes a zero-shot and exogenous fault detector based on an approximate variational reward imitation learning (AVRIL) structure. The fault detector recovers a reward signal as a function of externally observable information to describe the normal operation, which can then be used to detect anomalies caused by faults. Our method incorporates expert knowledge through a customizable reward prior distribution, allowing the fault detector to learn the reward solely from normal operation samples, without the need for a simulator or costly interactions with the environment. We evaluate our approach for exogenous partial fault detection in multi-stage robotic manipulator tasks, comparing it with several baseline methods. The results demonstrate that our method more effectively identifies unseen faults even when they occur within just three controller time steps.
2023-10-01
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (published)
Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system. Although conventional magnetic resonance imaging (MRI) is… (see more) widely used for MS diagnosis and clinical follow‐up, quantitative MRI has the potential to provide valuable intrinsic values of tissue properties that can enhance accuracy. In this study, we investigate the efficacy of diffusion MRI in distinguishing MS lesions within the cervical spinal cord, using a combination of metrics extracted from diffusion tensor imaging and Ball‐and‐Stick models.
From industrial to space robotics, safe landing is an essential component for flight operations. With the growing interest in artificial int… (see more)elligence, we direct our attention to learning based safe landing approaches. This paper extends our previous work, DOVESEI, which focused on a reactive UAV system by harnessing the capabilities of open vocabulary image segmentation. Prompt-based safe landing zone segmentation using an open vocabulary based model is no more just an idea, but proven to be feasible by the work of DOVESEI. However, a heuristic selection of words for prompt is not a reliable solution since it cannot take the changing environment into consideration and detrimental consequences can occur if the observed environment is not well represented by the given prompt. Therefore, we introduce PEACE (Prompt Engineering Automation for CLIPSeg Enhancement), powering DOVESEI to automate the prompt generation and engineering to adapt to data distribution shifts. Our system is capable of performing safe landing operations with collision avoidance at altitudes as low as 20 meters using only monocular cameras and image segmentation. We take advantage of DOVESEI's dynamic focus to circumvent abrupt fluctuations in the terrain segmentation between frames in a video stream. PEACE shows promising improvements in prompt generation and engineering for aerial images compared to the standard prompt used for CLIP and CLIPSeg. Combining DOVESEI and PEACE, our system was able improve successful safe landing zone selections by 58.62% compared to using only DOVESEI. All the source code is open source and available online.
Graph Neural Networks (GNNs) are effective tools for graph representation learning. Most GNNs rely on a recursive neighborhood aggregation s… (see more)cheme, named message passing, thereby their theoretical expressive power is limited to the first-order Weisfeiler-Lehman test (1-WL). An effective approach to this challenge is to explicitly retrieve some annotated examples used to enhance GNN models. While retrieval-enhanced models have been proved to be effective in many language and vision domains, it remains an open question how effective retrieval-enhanced GNNs are when applied to graph datasets. Motivated by this, we want to explore how the retrieval idea can help augment the useful information learned in the graph neural networks, and we design a retrieval-enhanced scheme called GRAPHRETRIEVAL, which is agnostic to the choice of graph neural network models. In GRAPHRETRIEVAL, for each input graph, similar graphs together with their ground-true labels are retrieved from an existing database. Thus they can act as a potential enhancement to complete various graph property predictive tasks. We conduct comprehensive experiments over 13 datasets, and we observe that GRAPHRETRIEVAL is able to reach substantial improvements over existing GNNs. Moreover, our empirical study also illustrates that retrieval enhancement is a promising remedy for alleviating the long-tailed label distribution problem.
2023-09-28
Frontiers in Artificial Intelligence and Applications (published)
Diffusion MRI of the spinal cord (SC) is susceptible to geometric distortion caused by field inhomogeneities, and prone to misalignment acro… (see more)ss time series and signal dropout caused by biological motion. Several modifications of image acquisition and image processing techniques have been introduced to overcome these artifacts, but their specific benefits are largely unproven and warrant further investigations. We aim to evaluate two specific aspects of image acquisition and processing that address image quality in diffusion studies of the spinal cord: susceptibility corrections to reduce geometric distortions, and cardiac triggering to minimize motion artifacts. First, we evaluate 4 distortion preprocessing strategies on 7 datasets of the cervical and lumbar SC and find that while distortion correction techniques increase geometric similarity to structural images, they are largely driven by the high-contrast cerebrospinal fluid, and do not consistently improve the geometry within the cord nor improve white-to-gray matter contrast. We recommend at a minimum to perform bulk-motion correction in preprocessing and posit that improvements/adaptations are needed for spinal cord distortion preprocessing algorithms, which are currently optimized and designed for brain imaging. Second, we design experiments to evaluate the impact of removing cardiac triggering. We show that when triggering is foregone, images are qualitatively similar to triggered sequences, do not have increased prevalence of artifacts, and result in similar diffusion tensor indices with similar reproducibility to triggered acquisitions. When triggering is removed, much shorter acquisitions are possible, which are also qualitatively and quantitatively similar to triggered sequences. We suggest that removing cardiac triggering for cervical SC diffusion can be a reasonable option to save time with minimal sacrifice to image quality.