Publications

A Rapid Method for Impact Analysis of Grid-Edge Technologies on Power Distribution Networks
Feng Li
Ilhan Kocar
This paper presents a novel rapid estimation method (REM) to perform stochastic impact analysis of grid-edge technologies (GETs) to the powe… (see more)r distribution networks. The evolution of network states' probability density functions (PDFs) in terms of GET penetration levels are characterized by the Fokker-Planck equation (FPE). The FPE is numerically solved to compute the PDFs of network states, and a calibration process is also proposed such that the accuracy of the REM is maintained for large-scale distribution networks. The approach is illustrated on a large-scale realistic distribution network using a modified version of the IEEE 8500 feeder, where electric vehicles (EVs) or photovoltaic systems (PVs) are installed at various penetration rates. It is demonstrated from quantitative analyses that the results from our proposed approach have negligible errors comparing with those obtained from Monte Carlo simulations.
Improving Context-Aware Preference Modeling for Language Models
Silviu Pitis
Ziang Xiao
While finetuning language models from pairwise preferences has proven remarkably effective, the underspecified nature of natural language pr… (see more)esents critical challenges. Direct preference feedback is uninterpretable, difficult to provide where multidimensional criteria may apply, and often inconsistent, either because it is based on incomplete instructions or provided by diverse principals. To address these challenges, we consider the two-step preference modeling procedure that first resolves the under-specification by selecting a context, and then evaluates preference with respect to the chosen context. We decompose reward modeling error according to these two steps, which suggests that supervising context in addition to context-specific preference may be a viable approach to aligning models with diverse human preferences. For this to work, the ability of models to evaluate context-specific preference is critical. To this end, we contribute context-conditioned preference datasets and accompanying experiments that investigate the ability of language models to evaluate context-specific preference. We use our datasets to (1) show that existing preference models benefit from, but fail to fully consider, added context, (2) finetune a context-aware reward model with context-specific performance exceeding that of GPT-4 and Llama 3 70B on tested datasets, and (3) investigate the value of context-aware preference modeling.
Open Problems in Technical AI Governance
Anka Reuel
Benjamin Bucknall
Stephen Casper
Tim Fist
Lisa Soder
Onni Aarne
Lewis Hammond
Lujain Ibrahim
Alan Chan
Peter Wills
Markus Anderljung
Ben Garfinkel
Lennart Heim
Andrew Trask
Gabriel Mukobi
Rylan Schaeffer
Mauricio Baker
Sara Hooker
Irene Solaiman
Alexandra Luccioni … (see 11 more)
Nitarshan Rajkumar
Nicolas Moes
Jeffrey Ladish
Neel Guha
Jessica Newman
Tobin South
Alex Pentland
Sanmi Koyejo
Mykel Kochenderfer
Robert F. Trager
AI progress is creating a growing range of risks and opportunities, but it is often unclear how they should be navigated. In many cases, the… (see more) barriers and uncertainties faced are at least partly technical. Technical AI governance, referring to technical analysis and tools for supporting the effective governance of AI, seeks to address such challenges. It can help to (a) identify areas where intervention is needed, (b) identify and assess the efficacy of potential governance actions, and (c) enhance governance options by designing mechanisms for enforcement, incentivization, or compliance. In this paper, we explain what technical AI governance is, why it is important, and present a taxonomy and incomplete catalog of its open problems. This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
T2VIndexer: A Generative Video Indexer for Efficient Text-Video Retrieval
Yili Li
Jing Yu
Keke Gai
Gang Xiong
Qi Wu
Current text-video retrieval methods mainly rely on cross-modal matching between queries and videos to calculate their similarity scores, wh… (see more)ich are then sorted to obtain retrieval results. This method considers the matching between each candidate video and the query, but it incurs a significant time cost and will increase notably with the increase of candidates. Generative models are common in natural language processing and computer vision, and have been successfully applied in document retrieval, but their application in multimodal retrieval remains unexplored. To enhance retrieval efficiency, in this paper, we introduce a model-based video indexer named T2VIndexer, which is a sequence-to-sequence generative model directly generating video identifiers and retrieving candidate videos with constant time complexity. T2VIndexer aims to reduce retrieval time while maintaining high accuracy. To achieve this goal, we propose video identifier encoding and query-identifier augmentation approaches to represent videos as short sequences while preserving their semantic information. Our method consistently enhances the retrieval efficiency of current state-of-the-art models on four standard datasets. It enables baselines with only 30%-50% of the original retrieval time to achieve better retrieval performance on MSR-VTT (+1.0%), MSVD (+1.8%), ActivityNet (+1.5%), and DiDeMo (+0.2%). The code is available at https://anonymous.4open.science/r/T2VIndexer-40BE.
Temporal Residual Jacobians For Rig-free Motion Transfer
Sanjeev Muralikrishnan
Niladri Shekhar Dutt
Siddhartha Chaudhuri
Vladimir Kim
Matthew Fisher
Niloy J. Mitra
We introduce Temporal Residual Jacobians as a novel representation to enable data-driven motion transfer. Our approach does not assume acces… (see more)s to any rigging or intermediate shape keyframes, produces geometrically and temporally consistent motions, and can be used to transfer long motion sequences. Central to our approach are two coupled neural networks that individually predict local geometric and temporal changes that are subsequently integrated, spatially and temporally, to produce the final animated meshes. The two networks are jointly trained, complement each other in producing spatial and temporal signals, and are supervised directly with 3D positional information. During inference, in the absence of keyframes, our method essentially solves a motion extrapolation problem. We test our setup on diverse meshes (synthetic and scanned shapes) to demonstrate its superiority in generating realistic and natural-looking animations on unseen body shapes against SoTA alternatives. Supplemental video and code are available at https://temporaljacobians.github.io/ .
Myelin basic protein mRNA levels affect myelin sheath dimensions, architecture, plasticity, and density of resident glial cells
Hooman Bagheri
Hana Friedman
Amanda Hadwen
Celia Jarweh
Ellis Cooper
Lawrence Oprea
Claire Guerrier
Anmar Khadra
Armand Collin
Amanda Young
Gerardo Mendez Victoriano
Matthew Swire
Andrew Jarjour
Marie E. Bechler
Rachel S. Pryce
Pierre Chaurand
Lise Cougnaud
Dajana Vuckovic
Elliott Wilion … (see 11 more)
Owen Greene
Akiko Nishiyama
Anouk Benmamar‐Badel
Trevor Owens
Vladimir Grouza
Marius Tuznik
Hanwen Liu
David A. Rudko
Jinyi Zhang
Katherine A. Siminovitch
Alan C. Peterson
The Madness of Multiple Entries in March Madness
Jeff Decary
David Bergman
Carlos Henrique Cardonha
Jason Imbrogno
This paper explores multi-entry strategies for betting pools related to single-elimination tournaments. In such betting pools, participants … (see more)select winners of games, and their respective score is a weighted sum of the number of correct selections. Most betting pools have a top-heavy payoff structure, so the paper focuses on strategies that maximize the expected score of the best-performing entry. There is no known closed-formula expression for the estimation of this metric, so the paper investigates the challenges associated with the estimation and the optimization of multi-entry solutions. We present an exact dynamic programming approach for calculating the maximum expected score of any given fixed solution, which is exponential in the number of entries. We explore the structural properties of the problem to develop several solution techniques. In particular, by extracting insights from the solutions produced by one of our algorithms, we design a simple yet effective problem-specific heuristic that was the best-performing technique in our experiments, which were based on real-world data extracted from recent March Madness tournaments. In particular, our results show that the best 100-entry solution identified by our heuristic had a 2.2% likelihood of winning a
Tree semantic segmentation from aerial image time series
Venkatesh Ramesh
Arthur Ouaknine
Chronosymbolic Learning: Efficient CHC Solving with Symbolic Reasoning and Inductive Learning
Ziyan Luo
Solving Constrained Horn Clauses (CHCs) is a fundamental challenge behind a wide range of verification and analysis tasks. Data-driven appro… (see more)aches show great promise in improving CHC solving without the painstaking manual effort of creating and tuning various heuristics. However, a large performance gap exists between data-driven CHC solvers and symbolic reasoning-based solvers. In this work, we develop a simple but effective framework,"Chronosymbolic Learning", which unifies symbolic information and numerical data points to solve a CHC system efficiently. We also present a simple instance of Chronosymbolic Learning with a data-driven learner and a BMC-styled reasoner. Despite its great simplicity, experimental results show the efficacy and robustness of our tool. It outperforms state-of-the-art CHC solvers on a dataset consisting of 288 benchmarks, including many instances with non-linear integer arithmetics.
Spectra: A Comprehensive Study of Ternary, Quantized, and FP16 Language Models
Ayush Kaushal
Tejas Pandey
Tejas Vaidhya
Aaryan Bhagat
UTG: Towards a Unified View of Snapshot and Event Based Models for Temporal Graphs
Shenyang Huang
Farimah Poursafaei
Emanuele Rossi
When can transformers compositionally generalize in-context?
Seijin Kobayashi
Simon Schug
Yassir Akram
Florian Redhardt
Johannes von Oswald
Razvan Pascanu
João Sacramento
Many tasks can be composed from a few independent components. This gives rise to a combinatorial explosion of possible tasks, only some of w… (see more)hich might be encountered during training. Under what circumstances can transformers compositionally generalize from a subset of tasks to all possible combinations of tasks that share similar components? Here we study a modular multitask setting that allows us to precisely control compositional structure in the data generation process. We present evidence that transformers learning in-context struggle to generalize compositionally on this task despite being in principle expressive enough to do so. Compositional generalization becomes possible only when introducing a bottleneck that enforces an explicit separation between task inference and task execution.