Delivered in partnership with Indspire, this tailored career pathway is designed to empower Indigenous talent to learn, develop, and lead the evolution of AI. Applications for the 2025 program are open until January 31st.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Maximum flow-based formulation for the optimal location of electric vehicle charging stations
With the increasing effects of climate change, the urgency to step away from fossil fuels is greater than ever before. Electric vehicles (EV… (see more)s) are one way to diminish these effects, but their widespread adoption is often limited by the insufficient availability of charging stations. In this work, our goal is to expand the infrastructure of EV charging stations, in order to provide a better quality of service in terms of user satisfaction (and availability of charging stations). Specifically, our focus is directed towards urban areas. We first propose a model for the assignment of EV charging demand to stations, framing it as a maximum flow problem. This model is the basis for the evaluation of user satisfaction with a given charging infrastructure. Secondly, we incorporate the maximum flow model into a mixed‐integer linear program, where decisions on the opening of new stations and on the expansion of their capacity through additional outlets is accounted for. We showcase our methodology for the city of Montreal, demonstrating the scalability of our approach to handle real‐world scenarios. We conclude that considering both spacial and temporal variations in charging demand is meaningful when solving realistic instances.
The surge in electricity use, coupled with the dependency on intermittent renewable energy sources, poses significant hurdles to effectively… (see more) managing power grids, particularly during times of peak demand. Demand Response programs and energy conservation measures are essential to operate energy grids while ensuring a responsible use of our resources This research combines distributed optimization using ADMM with Deep Learning models to plan indoor temperature setpoints effectively. A two-layer hierarchical structure is used, with a central building coordinator at the upper layer and local controllers at the thermal zone layer. The coordinator must limit the building's maximum power by translating the building's total power to local power targets for each zone. Local controllers can modify the temperature setpoints to meet the local power targets. The resulting control algorithm, called Distributed Planning Networks, is designed to be both adaptable and scalable to many types of buildings, tackling two of the main challenges in the development of such systems. The proposed approach is tested on an 18-zone building modeled in EnergyPlus. The algorithm successfully manages Demand Response peak events.
In the realm of antibody therapeutics development, increasing the binding affinity of an antibody to its target antigen is a crucial task. T… (see more)his paper presents GearBind, a pretrainable deep neural network designed to be effective for in silico affinity maturation. Leveraging multi-level geometric message passing alongside contrastive pretraining on protein structural data, GearBind capably models the complex interplay of atom-level interactions within protein complexes, surpassing previous state-of-the-art approaches on SKEMPI v2 in terms of Pearson correlation, mean absolute error (MAE) and root mean square error (RMSE). In silico experiments elucidate that pretraining helps GearBind become sensitive to mutation-induced binding affinity changes and reflective of amino acid substitution tendency. Using an ensemble model based on pretrained GearBind, we successfully optimize the affinity of CR3022 to the spike (S) protein of the SARS-CoV-2 Omicron strain. Our strategy yields a high success rate with up to 17-fold affinity increase. GearBind proves to be an effective tool in narrowing the search space for in vitro antibody affinity maturation, underscoring the utility of geometric deep learning and adept pre-training in macromolecule interaction modeling.
Climate models, such as Earth system models (ESMs), are crucial for simulating future climate change based on projected Shared Socioeconomic… (see more) Pathways (SSP) greenhouse gas emissions scenarios. While ESMs are sophisticated and invaluable, machine learning-based emulators trained on existing simulation data can project additional climate scenarios much faster and are computationally efficient. However, they often lack generalizability and interpretability. This work delves into the potential of causal representation learning, specifically the \emph{Causal Discovery with Single-parent Decoding} (CDSD) method, which could render climate model emulation efficient \textit{and} interpretable. We evaluate CDSD on multiple climate datasets, focusing on emissions, temperature, and precipitation. Our findings shed light on the challenges, limitations, and promise of using CDSD as a stepping stone towards more interpretable and robust climate model emulation.
To deal with notorious delays in communication systems, it is crucial to forecast key system characteristics, such as the communication load… (see more). Most existing studies aggregate data from multiple edge nodes for improving the forecasting accuracy. However, the bandwidth cost of such data aggregation could be unacceptably high from the perspective of system operators. To achieve both the high forecasting accuracy and bandwidth efficiency, this paper proposes an Adaptive Multi-Teacher Weighting in Teacher-Student Learning approach, namely AdaTeacher, for communication load forecasting of multiple edge nodes. Each edge node trains a local model on its own data. A target node collects multiple models from its neighbor nodes and treats these models as teachers. Then, the target node trains a student model from teachers via Teacher-Student (T-S) learning. Unlike most existing T-S learning approaches that treat teachers evenly, resulting in a limited performance, AdaTeacher introduces a bilevel optimization algorithm to dynamically learn an importance weight for each teacher toward a more effective and accurate T-S learning process. Compared to the state-of-the-art methods, Ada Teacher not only reduces the bandwidth cost by 53.85%, but also improves the load forecasting accuracy by 21.56% and 24.24% on two real-world datasets.
With the increasing use of data-intensive mobile applications and the number of mobile users, the demand for wireless data services has been… (see more) increasing exponentially in recent years. In order to address this demand, a large number of new cellular base stations are being deployed around the world, leading to a significant increase in energy consumption and greenhouse gas emission. Consequently, energy consumption has emerged as a key concern in the fifth-generation (5G) network era and beyond. Reinforcement learning (RL), which aims to learn a control policy via interacting with the environment, has been shown to be effective in addressing network optimization problems. However, for reinforcement learning, especially deep reinforcement learning, a large number of interactions with the environment are required. This often limits its applicability in the real world. In this work, to better deal with dynamic traffic scenarios and improve real-world applicability, we propose a transfer deep reinforcement learning framework for energy optimization in cellular communication networks. Specifically, we first pre-train a set of RL-based energy-saving policies on source base stations and then transfer the most suitable policy to the given target base station in an unsupervised learning manner. Experimental results demonstrate that base station energy consumption can be reduced significantly using this approach.
Dynamic link prediction is a crucial task in the study of evolving graphs, which serve as abstract models for various real-world application… (see more)s. Recent dynamic graph representation learning models have claimed near-perfect performance in this task. However, we argue that the standard evaluation strategy for dynamic link prediction overlooks the sparsity and recurrence patterns inherent in dynamic networks. Specifically, the current strategy suffers from issues such as evaluating models on a balanced set of positive and negative edges, neglecting the reassessment of frequently recurring positive edges, and lacking a comprehensive evaluation of both recurring and new edges.To address these limitations, we propose a novel evaluation strategy called EXHAUSTIVE, which takes into account all relevant negative edges and separately assesses the performance on recurring and new edges. Using our proposed evaluation strategy, we compare the performance of five state-of-the-art dynamic graph learning models on seven benchmark datasets. Compared to the previous common evaluation strategy, we observe an average drop of 62% in Average Precision for dynamic link prediction. Additionally, the ranking of the models also changes under the new evaluation setting. Furthermore, we demonstrate that while all models perform considerably worse when predicting new edges compared to recurring ones, the best performing models differ between the two scenarios. This highlights the importance of employing the proposed evaluation strategy for both the assessment and design of dynamic link prediction models. By adopting our novel evaluation strategy, researchers can obtain a more accurate understanding of model performance in dynamic link prediction, leading to improved evaluation and design of such models.
2023-12-04
2023 IEEE International Conference on Data Mining Workshops (ICDMW) (published)