Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Human activity recognition (HAR) is a popular research field in computer vision that has already been widely studied. However, it is still a… (see more)n active research field since it plays an important role in many current and emerging real-world intelligent systems, like visual surveillance and human-computer interaction. Deep reinforcement learning (DRL) has recently been used to address the activity recognition problem with various purposes, such as finding attention in video data or obtaining the best network structure. DRL-based HAR has only been around for a short time, and it is a challenging, novel field of study. Therefore, to facilitate further research in this area, we have constructed a comprehensive survey on activity recognition methods that incorporate DRL. Throughout the article, we classify these methods according to their shared objectives and delve into how they are ingeniously framed within the DRL framework. As we navigate through the survey, we conclude by shedding light on the prominent challenges and lingering questions that await the attention of future researchers, paving the way for further advancements and breakthroughs in this exciting domain.
2024-02-19
IEEE Transactions on Neural Networks and Learning Systems (published)
Human activity recognition (HAR) is a popular research field in computer vision that has already been widely studied. However, it is still a… (see more)n active research field since it plays an important role in many current and emerging real-world intelligent systems, like visual surveillance and human-computer interaction. Deep reinforcement learning (DRL) has recently been used to address the activity recognition problem with various purposes, such as finding attention in video data or obtaining the best network structure. DRL-based HAR has only been around for a short time, and it is a challenging, novel field of study. Therefore, to facilitate further research in this area, we have constructed a comprehensive survey on activity recognition methods that incorporate DRL. Throughout the article, we classify these methods according to their shared objectives and delve into how they are ingeniously framed within the DRL framework. As we navigate through the survey, we conclude by shedding light on the prominent challenges and lingering questions that await the attention of future researchers, paving the way for further advancements and breakthroughs in this exciting domain.
2024-02-19
IEEE Transactions on Neural Networks and Learning Systems (published)