Publications

Physics-Informed Transformer Networks
F. Dos
Santos
Tara Akhound-Sadegh
Physics-informed neural networks (PINNs) have been recognized as a viable alternative to conventional numerical solvers for Partial Differen… (see more)tial Equations (PDEs). The main appeal of PINNs is that since they directly enforce the PDE equation, one does not require access to costly ground truth solutions for training the model. However, a key challenge is their limited generalization across varied initial conditions. Addressing this, our study presents a novel Physics-Informed Transformer (PIT) model for learning the solution operator for PDEs. Using the attention mechanism, PIT learns to leverage the relationships between its initial condition and query points, resulting in a significant improvement in generalization. Moreover, in contrast to existing physics-informed networks, our model is invariant to the discretization of the input domain, providing great flexibility in problem specification and training. We validated our proposed method on the 1D Burgers’ and the 2D Heat equations, demonstrating notable improvement over standard PINN models for operator learning with negligible computational overhead.
On the Varied Faces of Overparameterization in Supervised and Self-Supervised Learning
Matteo Gamba
Arna Ghosh
Kumar Krishna
Agrawal
Blake A. Richards
Hossein Azizpour
Mårten Björkman
The quality of the representations learned by neural networks depends on several factors, including the loss function, learning algorithm, a… (see more)nd model architecture. In this work, we use information geometric measures to assess the representation quality in a principled manner. We demonstrate that the sensitivity of learned representations to input perturbations, measured by the spectral norm of the feature Jacobian, provides valuable information about downstream generalization. On the other hand, measuring the coefficient of spectral decay observed in the eigen-spectrum of feature covariance provides insights into the global representation geometry. First, we empirically establish an equivalence between these notions of representation quality and show that they are inversely correlated. Second, our analysis reveals the varying roles that overparameterization plays in improving generalization. Unlike supervised learning, we observe that increasing model width leads to higher discriminability and less smoothness in the self-supervised regime. Furthermore, we report that there is no observable double descent phenomenon in SSL with non-contrastive objectives for commonly used parameterization regimes, which opens up new opportunities for tight asymptotic analysis. Taken together, our results provide a loss-aware characterization of the different role of overparam-eterization in supervised and self-supervised learning.