Portrait of David Rolnick

David Rolnick

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, McGill University, School of Computer Science
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Machine Learning Theory

Biography

David Rolnick is an assistant professor at McGill University’s School of Computer Science, a core academic member of Mila – Quebec Artificial Intelligence Institute and holds a Canada CIFAR AI Chair. Rolnick’s work focuses on applications of machine learning to help address climate change. He is the co-founder and chair of Climate Change AI, and scientific co-director of Sustainability in the Digital Age. After completing his PhD in applied mathematics at the Massachusetts Institute of Technology (MIT), he was a NSF Mathematical Sciences Postdoctoral Research Fellow, an NSF Graduate Research Fellow and a Fulbright Scholar. He was named to MIT Technology Review’s “35 Innovators Under 35” in 2021.

Current Students

Collaborating Alumni - McGill University
Collaborating Alumni - Université de Montréal
Collaborating researcher - Cambridge University
Co-supervisor :
Postdoctorate - McGill University
Collaborating researcher - McGill University
Collaborating researcher - N/A
Co-supervisor :
Master's Research - McGill University
Collaborating researcher - Leipzig University
Collaborating researcher
Collaborating researcher
Independent visiting researcher
Collaborating researcher - Université de Montréal
Collaborating researcher - Johannes Kepler University
Collaborating researcher - University of Amsterdam
Master's Research - McGill University
PhD - McGill University
PhD - McGill University
Collaborating researcher
Independent visiting researcher - Université de Montréal
Collaborating researcher
Research Intern - Université de Montréal
Collaborating researcher - Columbia university
Postdoctorate - McGill University
Co-supervisor :
PhD - University of Waterloo
Co-supervisor :
Collaborating Alumni - Université de Montréal
Master's Research - McGill University
Collaborating researcher - Columbia university
Collaborating researcher - University of Tübingen
Collaborating researcher - Karlsruhe Institute of Technology
PhD - McGill University
Postdoctorate - Université de Montréal
Principal supervisor :
Collaborating researcher
PhD - McGill University
Collaborating Alumni - McGill University

Publications

Causal Climate Emulation with Bayesian Filtering
Sebastian H. M. Hickman
Ilija Trajkovic
Julia Kaltenborn
Francis Pelletier
Alex Archibald
Yaniv Gurwicz
Peer Nowack
Julien Boussard
Traditional models of climate change use complex systems of coupled equations to simulate physical processes across the Earth system. These … (see more)simulations are highly computationally expensive, limiting our predictions of climate change and analyses of its causes and effects. Machine learning has the potential to quickly emulate data from climate models, but current approaches are not able to incorporate physics-informed causal relationships. Here, we develop an interpretable climate model emulator based on causal representation learning. We derive a physics-informed approach including a Bayesian filter for stable long-term autoregressive emulation. We demonstrate that our emulator learns accurate climate dynamics, and we show the importance of each one of its components on a realistic synthetic dataset and data from two widely deployed climate models.
Bringing SAM to new heights: Leveraging elevation data for tree crown segmentation from drone imagery
Mélisande Teng
Arthur Ouaknine
Etienne Lalibert'e
Information on trees at the individual level is crucial for monitoring forest ecosystems and planning forest management. Current monitoring … (see more)methods involve ground measurements, requiring extensive cost, time and labor. Advances in drone remote sensing and computer vision offer great potential for mapping individual trees from aerial imagery at broad-scale. Large pre-trained vision models, such as the Segment Anything Model (SAM), represent a particularly compelling choice given limited labeled data. In this work, we compare methods leveraging SAM for the task of automatic tree crown instance segmentation in high resolution drone imagery in three use cases: 1) boreal plantations, 2) temperate forests and 3) tropical forests. We also study the integration of elevation data into models, in the form of Digital Surface Model (DSM) information, which can readily be obtained at no additional cost from RGB drone imagery. We present BalSAM, a model leveraging SAM and DSM information, which shows potential over other methods, particularly in the context of plantations. We find that methods using SAM out-of-the-box do not outperform a custom Mask R-CNN, even with well-designed prompts. However, efficiently tuning SAM end-to-end and integrating DSM information are both promising avenues for tree crown instance segmentation models.
Galileo: Learning Global&Local Features of Many Remote Sensing Modalities
Gabriel Tseng
Anthony Fuller
Marlena Reil
Henry Herzog
Patrick Beukema
Favyen Bastani
James R Green
Evan Shelhamer
Hannah Kerner
We introduce a highly multimodal transformer to represent many remote sensing modalities - multispectral optical, synthetic aperture radar, … (see more)elevation, weather, pseudo-labels, and more - across space and time. These inputs are useful for diverse remote sensing tasks, such as crop mapping and flood detection. However, learning shared representations of remote sensing data is challenging, given the diversity of relevant data modalities, and because objects of interest vary massively in scale, from small boats (1-2 pixels and fast) to glaciers (thousands of pixels and slow). We present a novel self-supervised learning algorithm that extracts multi-scale features across a flexible set of input modalities through masked modeling. Our dual global and local contrastive losses differ in their targets (deep representations vs. shallow input projections) and masking strategies (structured vs. not). Our Galileo is a single generalist model that outperforms SoTA specialist models for satellite images and pixel time series across eleven benchmarks and multiple tasks.
The Butterfly Effect: Neural Network Training Trajectories Are Highly Sensitive to Initial Conditions
Devin Kwok
Gül Sena Altıntaş
Colin Raffel
Neural network training is inherently sensitive to initialization and the randomness induced by stochastic gradient descent. However, it is … (see more)unclear to what extent such effects lead to meaningfully different networks, either in terms of the models' weights or the underlying functions that were learned. In this work, we show that during the initial "chaotic" phase of training, even extremely small perturbations reliably causes otherwise identical training trajectories to diverge-an effect that diminishes rapidly over training time. We quantify this divergence through (i)
FoMo: Multi-Modal, Multi-Scale and Multi-Task Remote Sensing Foundation Models for Forest Monitoring
Nikolaos Ioannis Bountos
Arthur Ouaknine
Ioannis Papoutsis
Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery
Mélisande Teng
Arthur Ouaknine
Etienne Lalibert'e
Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery
Mélisande Teng
Arthur Ouaknine
Etienne Lalibert'e
A Joint Space-Time Encoder for Geographic Time-Series Data
David Mickisch
Konstantin Klemmer
Mélisande Teng
Many real-world processes are characterized by complex spatio-temporal dependencies, from climate dynamics to disease spread. Here, we intro… (see more)duce a new neural network architecture to model such dynamics at scale: the \emph{Space-Time Encoder}. Building on recent advances in \emph{location encoders}, models that take as inputs geographic coordinates, we develop a method that takes in geographic and temporal information simultaneously and learns smooth, continuous functions in both space and time. The inputs are first transformed using positional encoding functions and then fed into neural networks that allow the learning of complex functions. We implement a prototype of the \emph{Space-Time Encoder}, discuss the design choices of the novel temporal encoding, and demonstrate its utility in climate model emulation. We discuss the potential of the method across use cases, as well as promising avenues for further methodological innovation.
OpenForest: a data catalog for machine learning in forest monitoring
Arthur Ouaknine
Teja Kattenborn
Etienne Lalibert'e
Harnessing artificial intelligence to fill global shortfalls in biodiversity knowledge
Justin Kitzes
Sara Beery
Kaitlyn M. Gaynor
Marta A. Jarzyna
Oisin Mac Aodha
Bernd Meyer
Graham W. Taylor
Devis Tuia
Tanya Berger-Wolf
Galileo: Learning Global and Local Features in Pretrained Remote Sensing Models
Gabriel Tseng
Anthony Fuller
Marlena Reil
Henry Herzog
Patrick Beukema
Favyen Bastani
James R Green
Evan Shelhamer
Hannah Kerner
From crop mapping to flood detection, machine learning in remote sensing has a wide range of societally beneficial applications. The commona… (see more)lities between remote sensing data in these applications present an opportunity for pretrained machine learning models tailored to remote sensing to reduce the labeled data and effort required to solve individual tasks. However, such models must be: (i) flexible enough to ingest input data of varying sensor modalities and shapes (i.e., of varying spatial and temporal dimensions), and (ii) able to model Earth surface phenomena of varying scales and types. To solve this gap, we present Galileo, a family of pretrained remote sensing models designed to flexibly process multimodal remote sensing data. We also introduce a novel and highly effective self-supervised learning approach to learn both large- and small-scale features, a challenge not addressed by previous models. Our Galileo models obtain state-of-the-art results across diverse remote sensing tasks.
Galileo: Learning Global and Local Features in Pretrained Remote Sensing Models
Gabriel Tseng
A. Fuller
Marlena Reil
Henry Herzog
Patrick Beukema
Favyen Bastani
James R. Green
Evan Shelhamer
Hannah Kerner
From crop mapping to flood detection, machine learning in remote sensing has a wide range of societally beneficial applications. The commona… (see more)lities between remote sensing data in these applications present an opportunity for pretrained machine learning models tailored to remote sensing to reduce the labeled data and effort required to solve individual tasks. However, such models must be: (i) flexible enough to ingest input data of varying sensor modalities and shapes (i.e., of varying spatial and temporal dimensions), and (ii) able to model Earth surface phenomena of varying scales and types. To solve this gap, we present Galileo, a family of pretrained remote sensing models designed to flexibly process multimodal remote sensing data. We also introduce a novel and highly effective self-supervised learning approach to learn both large- and small-scale features, a challenge not addressed by previous models. Our Galileo models obtain state-of-the-art results across diverse remote sensing tasks.